图论-07

07-图的着色
注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》

顶点着色

  • k-顶点着色:把 k k k个颜色分配给图 G G G的顶点,每个顶点分配一种颜色,称为k-顶点着色
  • 正常k-顶点着色:若相邻顶点颜色不同,则为正常k-顶点着色,此时称 G G G可k-顶点着色的
  • 顶点色数:使图G可正常顶点着色的最少颜色数k,为图G的顶点色数,简称色数,记为 X ( G ) X(G) X(G)
    • 正常k-顶点着色是顶点集合的一个划分
    • X ( G ) = 2 X(G) = 2 X(G)=2 当且仅当它是有边二分图
    • 若图H是图G的子图,则 X ( H ) ≤ X ( G ) X(H) ≤ X(G) X(H)X(G)
  • 定理:对任何图 G G G X ( G ) ≤ Δ ( G ) + 1 X(G) ≤ Δ(G) + 1 X(G)Δ(G)+1
  • Brooks定理:设 G G G是简单连通图,假设 G G G不是完全图也不是奇圈,则 X ( G ) ≤ Δ ( G ) X(G) ≤ Δ(G) X(G)Δ(G)
  • 定理:若 G G G是非空简单图,若 G G G中度数最大的点互不相邻,则 X ( G ) ≤ Δ ( G ) X(G)\leq\Delta(G) X(G)Δ(G)
  • 着色算法
    • 输入:图 G = ( V , E ) G=(V,E) G=(V,E),着色函数 π \pi π,色集 C = { 1 , 2 , ⋯   , Δ + 1 } C=\{1,2,\cdots,\Delta+1\} C={1,2,,Δ+1}
    • 输出:着色后的图
    • 初始化: π ( v 1 ) = 1 , i = 1 \pi(v_1)=1,i=1 π(v1)=1,i=1
    • 着色: C ( v i + 1 ) = { π ( v j ) ∣ j ≤ i , 并 且 v j 与 v i + 1 相 邻 } C(v_{i+1})=\{\pi(v_j)|j\leq i,并且v_j与v_{i+1}相邻\} C(vi+1)={π(vj)jivjvi+1},设 k k kKaTeX parse error: Undefined control sequence: \C at position 2: C\̲C̲(v_{i+1})中最小的正整数,令 π ( v i + 1 ) \pi(v_{i+1}) π(vi+1),而后 i = i + 1 i=i+1 i=i+1循环此步,直至 i = n i=n i=n停止

边着色

  • k-边着色:把k个颜色分配给图 G G G的边,每个边分配一种颜色,称为k-边着色
  • 正常k-边着色:若相邻边颜色不同,则为正常k-边着色,此时称 G G G可k-边着色的
  • 边色数:使图 G G G可正常顶点着色的最少颜色数 k k k,为图 G G G边色数,记为 X ′ ( G ) X'(G) X(G)
    • 正常k-边着色是边集合的一个划分,划分后每一个集合都是一个 G G G的一个匹配。
  • 引理:若连通图 G G G不是奇圈,则存在一种2-边着色,使得所用的两种颜色在每个度数大于等于2的顶点处都出现。
  • 改进:设 C C C C ′ C' C是图 G G G的两种k-边着色,如果 ∑ v ∈ V ( G ) c ( v ) < ∑ v ∈ V ( G ) c ′ ( v ) \sum_{v\in V(G)}c(v)<\sum_{v\in V(G)}c'(v) vV(G)c(v)<vV(G)c(v),则称k-边着色 C ′ C' C是对 C C C的一个改进
  • 最佳k-边着色:不能再改进的k-边着色称为最佳k-边着色
  • 引理:设 C = ( E 1 , E 2 , ⋯   , E k ) C=(E_1,E_2,\cdots,E_k) C=(E1,E2,,Ek)是图 G G G的一个最佳k-边着色。如果存在一个顶点 v 0 v_0 v0和两种颜色 i i i j j j,使得 i i i色不在 v 0 v_0 v0关联的边中出现,但 j j j色在 v 0 v_0 v0关联的边中至少出现两次,则边导出子图 G [ E i , E j ] G[E_i,E_j] G[Ei,Ej]中含 v 0 v_0 v0的连通片是一个奇圈
  • 定理:若 G G G是二分图,则 X ′ ( G ) = Δ ( G ) X'(G) = Δ(G) X(G)=Δ(G)
  • 定理:若 G G G是简单图,则 X ′ ( G ) = Δ ( G ) X'(G)=\Delta(G) X(G)=Δ(G) Δ ( G ) + 1 \Delta(G)+1 Δ(G)+1
    • G G G Δ ( G ) > 0 \Delta(G)>0 Δ(G)>0的简单图,若 G G G中恰有一个度为 Δ ( G ) \Delta(G) Δ(G)的点,或 G G G中恰有两个度为 Δ ( G ) \Delta(G) Δ(G)的点并且这两个点相邻,则 X ′ ( G ) = Δ ( G ) X'(G)=\Delta(G) X(G)=Δ(G)
    • 设图 G = ( V , E ) G=(V,E) G=(V,E)是简单图,若点数 n = 2 k + 1 n=2k+1 n=2k+1且边数 m > k Δ m>k\Delta m>kΔ,则 X ′ ( G ) = Δ ( G ) + 1 X'(G)=\Delta(G)+1 X(G)=Δ(G)+1
  • Vizing定理:设无环图 G G G中边的最大重数为 μ \mu μ,则 X ′ ( G ) ≤ Δ ( G ) + μ X'(G)\leq \Delta(G)+\mu X(G)Δ(G)+μ
  • 课表问题
    • 引理:设 M M M N N N是图 G G G中两个无公共边匹配,且 ∣ M ∣ > ∣ N ∣ |M|>|N| M>N,则存在 G G G中两个无公共边的匹配 M ′ M' M N ′ N' N,使得 ∣ M ′ ∣ = ∣ M ∣ − 1 , ∣ N ′ ∣ = ∣ N ∣ − 1 , M ′ ∪ N ′ = M ∪ N |M'|=|M|-1,|N'|=|N|-1,M'\cup N'=M\cup N M=M1,N=N1,MN=MN
    • 定理:设 G G G是二分图, ϵ = ∣ E ( G ) ∣ , Δ ≤ p \epsilon=|E(G)|,\Delta\leq p ϵ=E(G),Δp,则存在 G G G p p p个不相交匹配 M 1 , M 2 , ⋯   , M p M_1,M_2,\cdots,M_p M1,M2,,Mp,使得 E ( G ) = ∪ i = 1 p M i E(G)=\cup_{i=1}^pM_i E(G)=i=1pMi,且对 1 ≤ i ≤ p 1\leq i \leq p 1ip └ ϵ p ┘ ≤ ∣ M i ∣ ≤ ┌ ϵ p ┐ \llcorner \frac{\epsilon}{p}\lrcorner\leq|M_i|\leq\ulcorner\frac{\epsilon}{p}\urcorner pϵMipϵ

平面着色

  • 正常面着色:对其一个平面嵌入 G ′ G' G的每个面着一种颜色,使得相邻的两个面着不同的颜色。
  • 可k-面着色的:若能用 k k k种颜色给 G ′ G' G的面正常着色,就称 G G G可k-面着色的
  • 面色数:若G是可k-面着色的,但不是可(k-1)-面着色的,则称 G G G面色数 k k k,记 X ∗ ( G ) = k X_*(G) = k X(G)=k
  • 定理:设 G ∗ G^* G是连通平面图 G G G的对偶图, n ∗ , m ∗ , ϕ ∗ n^*,m^*,\phi^* n,m,ϕ n , m , ϕ n,m,\phi n,m,ϕ分别是 G ∗ G^* G G G G的顶点数、边数和面数,则
    • n ∗ = ϕ , m ∗ = m , ϕ ∗ = n n^*=\phi,m^*=m,\phi^*=n n=ϕ,m=m,ϕ=n
    • G ∗ G^* G的顶点 f ∗ f^* f G ′ G' G的面 f f f对应,则 d e g G ∗ ( f ∗ ) = d e g G ( f ) deg_{G^*}(f^*)=deg_G(f) degG(f)=degG(f)
  • 定理:设 G G G是连通的无环平面图,则 G G G是可k-面着色的,当且仅当它的对偶图 G ∗ G^* G是可k-顶点着色的

补充

  • 临界图:若G的任意真子图H均有X(H) < X(G),则称G是临界图
  • 定理:临界图有下列性质
    • k k k色图均有 k k k临界子图
    • 每个临界图均为简单连通图
    • G G G k k k临界图,则 δ ≥ k − 1 \delta\geq k-1 δk1
      • 推论每个k-顶点色图都最少有 k k k个度不小于 k − 1 k - 1 k1的顶点。
  • 惟一可着色图:设简单图 G = ( V , E ) G=(V,E) G=(V,E) k k k色标定图。若对 G G G的所有 k k k着色导出的关于 V V V的划分均相同,则称 G G G惟一k可着色图,简称惟一可着色图
  • 定理:设 G G G是惟一 k k k可着色图, k ≥ 2 k\geq2 k2,则
    • δ ≥ k − 1 \delta\geq k-1 δk1
    • G G G的任一 k k k着色中, G G G的任意两个色组的并导出的子图是连通的
  • 定理:每个惟一 n ( n ≥ 2 ) n(n\geq2) n(n2)可着色图都是 ( n − 1 ) (n-1) (n1)连通的
  • 定理:每个惟一4可着色平面图都是极大可平面图
  • P k ( G ) P_k(G) Pk(G):表示图 G G G的k着色数目,即正常着色的方式数
    • P k ( K n ) = k ( k − 1 ) ⋯ ( k − n + 1 ) P_k(K_n)=k(k-1)\cdots(k-n+1) Pk(Kn)=k(k1)(kn+1)
    • 若图 G G G含有 n n n个孤立点,则 P k ( G ) = k n P k ( G ′ ) P_k(G)=k^nP_k(G') Pk(G)=knPk(G),其中 G ′ G' G G G G去掉 n n n个孤立点的图
  • 定理:若 G G G是简单图,则对 G G G的任意边 e e e,有 P k ( G ) = P k ( G − e ) − P k ( G ⋅ e ) P_k(G)=P_k(G-e)-P_k(G·e) Pk(G)=Pk(Ge)Pk(Ge)
    • 推论:设 e = u v e=uv e=uv是图 G G G的一条边,并且 d ( u ) = 1 d(u)=1 d(u)=1,则 P k ( G ) = ( k − 1 ) P k ( G − u ) P_k(G)=(k-1)P_k(G-u) Pk(G)=(k1)Pk(Gu)
  • 色多项式:对给定的图 G G G P k ( G ) P_k(G) Pk(G)是一个关于 k k k的多项式,称为色多项式
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值