RAG 的文档解析:PDF 篇

在大语言模型(LLM)如ChatGPT、Claude、Gemini日益强大的今天,人们希望它们不仅能“生成”,还要“准确生成”。然而,LLM训练的数据往往是静态的、封闭的,这使得它们在面对时效性强、专业性高、上下文复杂的问题时,力不从心。

在有些时候,企业内部或者事业部门内部的数据是不允许公开上传的,那么也就没有办法享受到大模型的服务,生产力也得不到解放。

这时,RAG(Retrieval-Augmented Generation,检索增强生成)应运而生。它是连接“生成能力”与“外部知识”的桥梁,让LLM不再是“闭门造车”,而成为真正的知识型智能体。

关于RAG的介绍可以参考什么是RAG?一文搞懂检索增强生成技术

对于RAG来说,最重要的无疑是从文档中提取内容作为知识库,所以从文档中提取得到高质量的数据至关重要。

下面介绍当下对pdf文件进行解析的方法。

1.pdf解析难点

pdf是一种和docx以及doc文档一样最常见的文档格式。以下介绍和分析以gpt3论文中的第9页为例。

尽管 PDF(Portable Document Format)是一种通用、稳定、跨平台的文档格式,但它并不是为结构化数据提取设计的格式,这也使得从中提取高质量、结构化的知识成为一项技术挑战。主要难点包括:

1. 格式复杂、结构不统一

PDF 文件更像是“数字版的打印纸张”,其本质是页面渲染信息,而不是像 HTML、XML 那样的结构化标记语言。这导致同样是一个段落或表格,不同的 PDF 文件可能用完全不同的底层表示方式来编码。因此:

  • 标题和正文没有语义上的“层级结构”;
  • 表格、列表、图像和段落难以准确分离;
  • 多栏排版、复杂排版(如学术论文)易导致文本顺序错乱。
2. 内容可能是图片而非文本

许多扫描版文档(如合同、书籍、报表等)将内容以图像形式嵌入 PDF,此时需要 OCR(Optical Character Recognition,光学字符识别)工具进行识别,但 OCR:

### 使用RAG和VLM进行复杂文档解析 #### 方法概述 为了实现复杂的文档解析,可以采用基于检索增强生成(Retrieval-Augmented Generation, RAG)技术和视觉语言模型(Vision-Language Model, VLM)。这类方法能够有效处理多模态数据并提供更精准的回答。 对于文本部分,GraphRAG框架被证明能显著提升问答系统的性能[^1]。该框架不仅依赖于传统的向量相似度匹配来查找相关信息片段,还引入了由大型语言模型构建的知识图谱,从而更好地理解上下文关系及其语义含义。 当涉及到图像内容时,则需利用预训练阶段获得的能力——通过对大量带描述性的图片-文字对的学习,使得模型具备识别图像基本特征并与之关联适当解释说明的功能[^3]。 #### 实现流程 具体到操作层面: - **准备材料**:收集待解析文件,包括但不限于PDF、Word等形式的文字资料;同时准备好可能涉及的相关领域高质量图文素材库。 - **提取信息**:运用OCR技术将非结构化电子档转换成可编辑纯文本格式,并从中抽取关键句作为后续查询依据;针对插图或图表等内容则借助已有的VLM来进行初步解读。 - **建立索引**:根据上述所得创建倒排表或其他形式高效的数据存储机制以便快速定位目标位置。 - **执行搜索**:启动GraphRAG引擎,在已有知识网络基础上实施广度优先遍历算法寻找最贴近问题核心的答案节点群集。 - **整合输出**:最后一步就是把来自不同渠道获取的信息按照一定逻辑顺序组合起来形成最终回复。 以下是Python代码示例用于展示如何集成这些组件完成一次完整的任务流: ```python from transformers import pipeline import pytesseract from PIL import Image def ocr_image(image_path): """使用Tesseract OCR读取图片中的文本""" img = Image.open(image_path) text = pytesseract.image_to_string(img) return text def rag_query(query_text, context_db): """模拟发起基于GraphRAG架构的查询请求""" nlp_pipeline = pipeline('question-generation') generated_questions = nlp_pipeline(context=context_db) # 这里简化表示为直接返回第一个问题的结果 best_match = next((q for q in generated_questions if query_text.lower() in q['question'].lower()), None)['answer'] return best_match document_content = "这里放置实际文档内容" image_caption = ocr_image('./example.png') context_database = document_content + "\n" + image_caption query_result = rag_query("关于这个主题的关键点是什么?", context_database) print(f"查询结果如下:\n{query_result}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张先森啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值