【自留】第三次作业

文章通过R语言对数据进行分析,检查了男生和女生身高与体重之间的相关性,进行了单样本T检验以评估女生平均身高的假设,并运用t.test和var.test函数对比了a、b组男生和女生的身高差异。此外,文章介绍了如何利用tapply函数快速获取各组内男女的身高均值。
摘要由CSDN通过智能技术生成

数据的五列分别为姓名、身高、体重、性别以及分组。显著水平为 α = 0.05

调用R自带函数即可,不需要自己写过程。

判断下列陈述是否正确:

1. 无论是男生还是女生,都有“身高越高,体重越大”的趋势。

2. 可以认为女生的平均身高为165cm。

3. 可以认为a组男生和b组男生的身高是相同的。

4. 可以认为a组女生比b组女生更高。

5. 我现在想知道a、b组内男女生的身高均值分别是多少; 之前我讲过的条件筛选的方法可以解决这个问题, 但如果组别很多的话,这个方法就相当繁琐。现在请自行查阅tapply()函数,然后告诉我怎么简单快速的得到答案。


read.csv('E:/hdataE.csv')
plants <- read.csv('E:/hdataE.csv')
attach(plants)

# 题目1
plot(height[gender=='M'],weight[gender=='M'])
cor.test(height[gender=='M'],weight[gender=='M'],method='pearson',use='complete.obs')
# 男生身高和体重的相关系数为0.4270581,具有弱的正相关性,认同趋势。
plot(height[gender=='F'],weight[gender=='F'])
cor.test(height[gender=='F'],weight[gender=='F'],method='pearson',use='complete.obs')



# 题目2,单样T检验,女生身高
fh 
t.test(fh,mu=165)

# 题目3,a、b两组男生平均身高
mah
mbh
# 显著性检验
var.test(mah,mbh)
# t检验
t.test(mah,mbh)

#题目4, a、b两组女生的身高
t.test(fah,fbh)
t.test(fah,fbh,alternative = 'greater')
t.test(fah,fbh,alternative = 'less')


# 题目5,tapply函数
list(gender,group)
tapply(height,list(gender,group),mean)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值