内生性处理:DID

本文回顾了计量经济学中因果研究的框架,重点介绍了差分个体影响(DID)方法,用于处理内生性问题。DID通过对比处理组和对照组在不同时间点的差异,消除遗漏变量的影响,以得到无偏的因果效应估计。文中强调了平行趋势假设的重要性,即处理前后处理组和对照组应具有相似的趋势。
摘要由CSDN通过智能技术生成

计量经济学中的因果研究框架回顾

给出一个OLS回归估计方程:
y = α + β x + μ y=\alpha +\beta x+\mu y=α+βx+μ

  1. 方程估计的斜率系数 β = d y d x \beta =\frac{dy}{dx} β=dxdy度量了 x x x y y y的因果关系的影响

  2. 无偏估计量 β \beta β需要满足严格的外生性(exogeneity): c o v ( x , μ ) = 0 cov( x,\mu) =0 cov(x,μ)=0
    当残差项 μ \mu μ中包含未被观测到的遗漏变量 ω \omega ω时,其严格外生的假设失效,此时说模型存在内生性endogeneity

  3. 在经济学实证研究中,解决内生性的方法包括:面板数据、工具变量、以及DID等方法



前言

  1. 方程中存在遗漏变量问题,或一些混杂因素不可观测。导致一个多元回归方程无法控制所有可能的因变量。例如:
    房屋的“外观”和“状态”无法准确量化和表达
    在工人工资的研究中,工人的工作热情是一个无法观测的变量
  2. DID 的思想核心在于消除由于遗漏变量问题带来的估计量偏差
  3. DID 的做法需要数据中的研究变量分为两组;并且至少可以在时间维度上分为两期,这也称为处理组treatment在时间维度上的差异对比。

一、DID的处理过程

下面用一组例子来展示DID的处理过程:

使用kielmc数据集研究社区中的垃圾焚烧炉对房屋价格的影响,数据集根据时间维度分为1978年数据和1981年数据两组,分别对应建立垃圾焚烧炉的前后时间,数据集的链接放在文末,感兴趣可自行下载。


> str(kielmc)
'data.frame':	321 obs. of  25 variables:
 $ year    : int  1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 ...
 $ age     : int  48 83 58 11 48 78 22 78 42 41 ...
 $ agesq   : num  2304 6889 3364 121 2304 ...
 $ nbh     : int  4 4 4 4 4 4 4 4 4 4 ...
 $ cbd     : num  3000 4000 4000 4000 4000 3000 4000 3000 3000 3000 ...
 $ intst   : num  1000 1000 1000 1000 2000 2000 2000 2000 2000 2000 ...
 $ lintst  : num  6.91 6.91 6.91 6.91 7.6 ...
 $ price   : num  60000 40000 34000 63900 44000 46000 56000 38500 60500 55000 ...
 $ rooms   : int  7 6 6 5 5 6 6 6 8 5 ...
 $ area    : int  1660 2612 1144 1136 1868 1780 1700 1556 1642 1443 ...
 $ land    : num  4578 8370 5000 10000 10000 ...
 $ baths   : int  1 2 1 1 1 3 2 2 2 2 ...
 $ dist    : num  10700 11000 11500 11900 12100 10000 11700 10200 10500 11000 ...
 $ ldist   : num  9.28 9.31 9.35 9.38 9.4 ...
 $ wind    : int  3 3 3 3 3 3 3 3 3 3 ...
 $ lprice  : num  11 10.6 10.4 11.1 10.7 ...
 $ y81     : int  0 0 0 0 0 0 0 0 0 0 ...
 $ larea   : num  7.41 7.87 7.04 7.04 7.53 ...
 $ lland   : num  8.43 9.03 8.52 9.21 9.21 ...
 $ y81ldist: num  0 0 0 0 0 0 0 0 0 0 ...
 $ lintstsq: num  47.7 47.7 47.7 47.7 57.8 ...
 $ nearinc : int  1 1 1 1 1 1 1 1 1 1 ...
 $ y81nrinc: int  0 0 0 0 0 0 0 0 0 0 ...
 $ rprice  : num  60000 40000 34000 63900 44000 46000 56000 38500 60500 55000 ...
 $ lrprice : num  11 10.6 10.4 11.1 10.7 ...
 - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"

DID 的思想在于,当回归的自变量时一个是否施加处理treatment的二元虚拟变量指标时,估计的斜率系数是不同处理组treatment和对照组control之间的平均结果的差异:

D I D ≡ β ^ 1 1981 − β ^ 1 1978 (1) DID\equiv \hat{\beta}_{1}^{1981}-\hat{\beta}_{1}^{1978} \tag1 DIDβ^11981β^11978(1)
D I D = ( y ˉ 1981 , t r e a t m e n t − y ˉ 1978 , t r e a t m e n t ) − ( y ˉ 1981 , c o n t r o l − y ˉ 1978 , t c o n t r o l ) (2) DID=( \bar{y}^{1981,treatment}-\bar{y}^{1978,treatment} ) -( \bar{y}^{1981,control}-\bar{y}^{1978,tcontrol} ) \tag2 DID=(yˉ1981,treatmentyˉ1978,treatment)(yˉ1981,controlyˉ1978,tcontrol)(2)
D I D = ( y ˉ 1981 , t r e a t m e n t − y ˉ 1981 , c o n t r o l ) − ( y ˉ 1978 , t r e a t m e n t − y ˉ 1978 , t c o n t r o l ) (3) DID=( \bar{y}^{1981,treatment}-\bar{y}^{1981,control}) -( \bar{y}^{1978,treatment}-\bar{y}^{1978,tcontrol}) \tag 3 DID=(yˉ1981,treatmentyˉ1981,control)(yˉ1978,treatmentyˉ1978,tcontrol)(3)

根据上式可以看出,DID存在两种等效的做法:

  • 第一种方式是在不同时期分别比较处理组和对照组的差异
  • 第二种方式是在处理组和对照组中分别比较时间维度上的不同

一种更一般化的表达如下所示,回归方程中包含两个虚拟变量dummy variables以及他们的交乘项interaction term

y = β 0 + β 1 D 1 + β 2 D 2 + β 3 ( D 1 ∗ D 2 ) + μ (4) y=\beta _0+\beta _1D_1+\beta _2D_2+\beta _3\left( D_1*D_2 \right) +\mu \tag4 y=β0+β1D1+β2D2+β3(D1D2)+μ(4)

其中, D 1 = 1 D_1=1 D1=1 代表处理组, D 1 = 0 D_1=0 D1=0 代表对照组; D 2 = 1 D_2=1 D2=1 代表处理后的时间段, D 2 = 0 D_2=0 D2=0 代表处理前的时间阶段。方程回归系数表示如下:

D 2 = 0 D_2=0 D2=0 D 2 = 1 D_2=1 D2=1
D 1 = 0 D_1=0 D1=0 β 0 \beta _0 β0(case A) β 0 + β 2 \beta _0+\beta _2 β0+β2(case B)
D 1 = 1 D_1=1 D1=1 β 0 + β 1 \beta _0+\beta _1 β0+β1(case C) β 0 + β 1 + β 2 + β 3 \beta _0+\beta _1+\beta _2+\beta _3 β0+β1+β2+β3(case D)

β 3 \beta _3 β3也就是我们上面关注的DID估计量:

β 3 = [ ( c a s e D ) − ( c a s e B ) ] − [ ( c a s e C ) − ( c a s e A ) ] (5) \beta _3=\left[ \left( case\mathrm{ }D \right) -\left( case\mathrm{ }B \right) \right] -\left[ \left( case\mathrm{ }C \right) -\left( case\mathrm{ }A \right) \right] \tag5 β3=[(caseD)(caseB)][(caseC)(caseA)](5)
β 3 = [ ( c a s e D ) − ( c a s e C ) ] − [ ( c a s e B ) − ( c a s e A ) ] (6) \beta _3=\left[ \left( case\mathrm{ }D \right) -\left( case\mathrm{ }C \right) \right] -\left[ \left( case\mathrm{ }B \right) -\left( case\mathrm{ }A \right) \right] \tag6 β3=[(caseD)(caseC)][(caseB)(caseA)](6)

二、内生性处理

下面我们来解释DID是如何消除由于遗漏变量omitted variables所带来的内生性endogeneity和估计偏差(bias):

仍然使用上面的数据按时间分为两组:1978和1981对两组数据分别进行回归,得到处理效应的有偏估计量:
β ^ 1 1981 → β 1 + O V B 1981 \hat{\beta}_{1}^{1981}\rightarrow \beta _1+OVB^{1981} β^11981β1+OVB1981
其中OVB是一个由于遗漏变量问题所带来的估计量偏差,导致处理效应的真实估计量 β 1 \beta _1 β1和方程的估计系数 β ^ 1 1981 \hat{\beta}_{1}^{1981} β^11981产生不同。

同样的方法,对1978年的数据进行回归:
β ^ 1 1978 → 0 + O V B 1978 \hat{\beta}_{1}^{1978}\rightarrow 0+OVB^{1978} β^119780+OVB1978
如果我们假设:遗漏变量对因变量的影响不随时间的变化而变化:
O V B 1978 = O V B 1981 OVB^{1978}=OVB^{1981} OVB1978=OVB1981
那么通过我们的 DID 估计量就可以获得一个"干净"的无偏估计量 β 1 \beta _1 β1
D I D ≡ β ^ 1 1981 − β ^ 1 1978 → β 1 DID\equiv \hat{\beta}_{1}^{1981}-\hat{\beta}_{1}^{1978}\rightarrow \beta _1 DIDβ^11981β^11978β1

注意

  • DID的假设要求遗漏变量对因变量的影响不随时间变化
  • 上文中的处理treatment既可以表示政策的实施,也可以用来反映变量的状态 ( D ) 1 \left( D \right) _1 (D)1
  • 上文中的时间既可以是来源于两不同时间段的样本,也可以是以某一时点划分的政策的前后、外生事件的冲击(也称为自然实验)

三、平行趋势

简单来说,我们需要表明处理组和对照组在处理前有相似的时间路径(共同趋势)。举个例子:我们是在比较苹果和苹果,而不是苹果和橘子。在处理后,我们希望看到趋势之间的差距,要么发散或收敛。如果两种趋势之间的差距在整个时间内保持不变,那么处理的效果就消失了。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值