from numpy.core.fromnumeric import size
import torch
import torch.nn as nn
import torch.nn.functional as F
#定义网络类
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
#定义第一层卷积层,输入维度=1,输出维度=6,卷积核大小3*3
self.conv1=nn.Conv2d(1,6,3)
#定义第二层卷积层,输入维度=6,输出维度=16,卷积核大小3*3
self.conv2=nn.Conv2d(6,16,3)
#定义三层全连接神经网络
self.fc1= nn.Linear(16*6*6,120)
self.fc2= nn.Linear(120,84)
self.fc3= nn.Linear(84,10)
def forward(self,x):
#注意:任意卷积层后面要加激活层,池化层
x= F.max_pool2d(F.relu(self.conv1(x)),(2,2))
x= F.max_pool2d(F.relu(self.conv2(x),2))
#经过卷积层的处理后,张量要进入全连接层,进入前调整张量的形状
x= x.view(-1,self.num_flat_features(x))
x= F.relu(self.fc1(x))
x= F.relu(self.fc2(x))
x= self.fc3(x)
return x
def num_flat_features(self,x):
size=x.size()[1:]
num_features =1
for s in size:
num_features *=s
return num_features
net=Net()
print(net)
模型中所有可以训练的参数,可以通过net.parameters()获得
params = list(net.parameters()) 封装到列表
print(len(params)) 列表长度
print(params[0].size()) 第一个
加入张量
input= torch.randn(1,1,32,32)
out= net(input)
print(out)
print(out.size())
输出
10
torch.Size([6, 1, 3, 3])
tensor([[-0.0725, 0.0692, -0.1377, -0.0815, 0.0373, -0.0200, -0.0445, 0.0495,
-0.0096, -0.0895]], grad_fn=<AddmmBackward>)
torch.Size([1, 10])
应用nn.MSELoss计算损失值
target=torch.randn(10)
target=target.view(1,-1)
criterion=nn.MSELoss()
loss= criterion(out,target)
print(loss)
当调用loss.backward(),整张图将对loss自动求导
print(loss.grad_fn)
print(loss.grad_fn.next_functions[0][0])
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
#pytorch中首先要执行梯度清零的操作
net.zero_grad()
print('conv1.bias.grad before backward.')
print(net.conv1.bias.grad)
#在pytorch中实现一次反向传播
loss.backward()
print('conv1.bias.grad after backward.')
print(net.conv1.bias.grad)
# 第一步导入优化器包
import torch.optim as optim
# 构建优化器
optimizer=optim.SGD(net.parameters(),lr=0.01)
# 第二步将优化器梯度清零
optimizer.zero_grad()
#第三步执行网络计算并计算损失值
output=net(input)
loss=criterion(output,target)
#第四步执行反向传播
loss.backward()
#第五步更新参数
optimizer.step()