交通状态预测 | Python实现基于扩散卷积和GNN的交通流时空预测

41 篇文章 244 订阅 ¥29.90 ¥99.00
19 篇文章 124 订阅 ¥29.90 ¥99.00
本文介绍了使用扩散卷积递归神经网络(DCRNN)进行交通状态预测的方法,该框架结合空间和时间依赖性,适用于交通流的时空预测。DCRNN利用图上的双向随机游走捕获空间依赖,并通过编码器-解码器架构和计划采样处理时间序列数据。实验表明,DCRNN在实际交通数据集上表现优越。
摘要由CSDN通过智能技术生成

交通状态预测 | Python实现基于扩散卷积和GNN的交通流时空预测

基本介绍

将交通流建模为有向图上的扩散过程,并引入扩散卷积递归神经网络 (Diffusion Convolutional Recurrent Neural Network,DCRNN),这是一种用于交通预测的深度学习框架,它在交通流中结合了空间和时间依赖性。具体来说,DCRNN 使用图上的双向随机游走来捕获空间依赖性,并使用具有计划采样(scheduled sampling)的编码器-解码器架构来捕获时间依赖性。

  • 在这项工作中,我们使用有向图表示交通传感器之间的成对空间相关性,其节点是传感器,边权重表示通过道路网络距离测量的传感器对之间的接近度。
  • 我们将交通流的动态建模为扩散过程,并提出扩散卷积操作来捕获空间依赖性。我们进一步提出了扩散卷积递归神经网络(DCRNN),它集成了扩散卷积(diffusion convolution)、序列到序列(seq2seq)架构和计划采样(scheduled sampling)技术。
  • 在对现实世界的交通数据集进行评估时,DCRNN 始终在很大程度上优于最先进的交通预测基线。总之:我们研究交通预测问题&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值