判断二分图:染色法
**二分图:**只有偶数环没有奇数环的图
**算法思路:**未染色的点初始化为-1,将一点染色成0,然后将其连接的点染成1,与染成1连接的点染成0……,以此类推,如果有点将会染成两种颜色则染色失败,改图不是二分图。
模板
代码实现:
int e[M], h[M], nex[M], idx;
int color[N];//-1表示没有染色
int n,m;//点数与边数
void add(int a, int b)
{
e[idx] = b;
nex[idx] = h[a];
h[a] = idx++;
}
bool dfs(int u, int t)
{
color[u] = t;
for(int i = h[u]; i != -1; i = nex[i])
{
int j = e[i];
if(color[j] == -1)
{
if(!dfs(j, 1-t)) return false;
}
else if(color[j] == t) return false;
}
return true;
}
bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for(int i = 1; i <= n; i++)
{
if(color[i] == -1)
{
if(!dfs(i, 0))
{
flag = false;
break;
}
}
}
return flag;
}
if(check()) puts("yes");
else puts("no");
二分图最大匹配数:匈牙利算法
算法思路:
现在要为点a寻找一个匹配点,则遍历所有能与a匹配的点,如果该点仍没有匹配,则a匹配该点。如果以及匹配,就尝试让该点匹配的点匹配其他的点。
对所有的点就进行这样一个策略就可完成匹配过程
模板:求最大匹配数
代码实现:
int h[N], nex[M], e[M], idx;//链式前向星
int match[N];//s2中的点对应的匹配对象
bool st[N];//s2中的点是否已经访问过
int n1, n2, m;
bool Find(int x)
{
for(int i = h[x]; i != -1; i = nex[i])
{
int j = e[i];
if(!st[j])
{
st[j] = true;
if(match[j] == 0 || Find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
int res = 0;
for(int i = 1; i <= n1; i++)
{
memset(st, false, sizeof st);
if(Find(i)) res++;
}
printf("%d", res);
}