二分图的判别与求最大匹配数

判断二分图:染色法

**二分图:**只有偶数环没有奇数环的图

**算法思路:**未染色的点初始化为-1,将一点染色成0,然后将其连接的点染成1,与染成1连接的点染成0……,以此类推,如果有点将会染成两种颜色则染色失败,改图不是二分图。

模板

代码实现:

int e[M], h[M], nex[M], idx;
int color[N];//-1表示没有染色
int n,m;//点数与边数

void add(int a, int b)
{
    e[idx] = b;
    nex[idx] = h[a];
    h[a] = idx++;
}

bool dfs(int u, int t)
{
    color[u] = t;
    for(int i = h[u]; i != -1; i = nex[i])
    {
        int j = e[i];
        if(color[j] == -1)
        {
            if(!dfs(j, 1-t)) return false;
        }
        else if(color[j] == t) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for(int i = 1; i <= n; i++)
    {
        if(color[i] == -1)
        {
            if(!dfs(i, 0))
            {
                flag = false;
                break;
            }
        }
    }
    return flag;
}

 if(check()) puts("yes");
 else puts("no");

二分图最大匹配数:匈牙利算法

算法思路:
现在要为点a寻找一个匹配点,则遍历所有能与a匹配的点,如果该点仍没有匹配,则a匹配该点。如果以及匹配,就尝试让该点匹配的点匹配其他的点。
对所有的点就进行这样一个策略就可完成匹配过程

模板:求最大匹配数

代码实现:

int h[N], nex[M], e[M], idx;//链式前向星
int match[N];//s2中的点对应的匹配对象
bool st[N];//s2中的点是否已经访问过
int n1, n2, m;

bool Find(int x)
{
    for(int i = h[x]; i != -1; i = nex[i])
    {
        int j = e[i];
        if(!st[j])
        {
            st[j] = true;
            if(match[j] == 0 || Find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

int res = 0;
for(int i = 1; i <= n1; i++)
{
    memset(st, false, sizeof st);
    if(Find(i)) res++;
}

printf("%d", res);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值