论文解读作者:温梓曦,肖善,杨子豪,张怡雯
编者按:
上一期的文献分享我们介绍了制造商如何选择在线平台的代理或者转售渠道,但是在实践中,厂商会同时通过同一个在线平台的两种渠道进行销售,或仅选择一种渠道进行销售,这种情况是现有理论无法解释的,因此,本期我们推荐的文献讨论了三种渠道结构(代理渠道、转售渠道和双渠道)的选择,并在文章最后附上编者思考。
Channel Structures of Online Retail Platforms
原文信息:
Albert Y. Ha, Shilu Tong, Yunjie Wang (2021) Channel Structures of Online Retail Platforms. Manufacturing & Service Operations Management 24(3):1547-1561. https://doi.org/10.1287/msom.2021.1011
原文摘要总结如下:
**问题定义:**本文研究了一个在线平台的渠道选择问题,该平台通过提供服务来提高其销售渠道的需求。**学术/实践相关性:**在关于在线零售平台渠道结构的现有文献中,通常假设制造商通过平台的代理或转售渠道进行销售,但不会同时通过这两种渠道进行销售。实践中,很多厂商通过同一个网络零售平台的两种渠道销售同一种产品。 此外,在线零售平台通常会投资于零售服务,以提高其销售渠道的需求。方法论:文章开发了一个有制造商和一个在线电商平台组成的二级供应链,考虑线上零售商平台的服务水平投入,研究均衡渠道选择、批发价格和零售数量决策问题。
通过推导出三种渠道结构的均衡条件,作者发现,
①代理渠道的加入会诱导制造商降低转售渠道的批发价格,从而减小供应链中的双重边际效应, 被称为“批发价格效应”。随着佣金率的提高,双渠道的销售流向代理渠道,线上零售商的服务水平也会提高,被称为“渠道灵活效应”。两者的共同作用会决定双渠道是否会成为均衡结构。
②双渠道总是比代销渠道更加有效。当佣金率或者服务成本高时,双渠道同时也比转售渠道更为有效。
③当从转售模式转变为双渠道模式时,可能会出现双赢、双输、赢输、输赢四种不同的情况。以上结果解释了供应商通过双渠道在同一零售平台进行销售的原因,也为线上平台制定渠道政策提供了理论依据。
- 关键词:渠道结构、在线零售平台、供应商侵占、供应链管理
1 问题背景
消费者越来越多地转向在线渠道购物,为了满足客户的生活方式,许多零售商广泛地利用在线渠道和社交媒体提供客户服务并开展营销活动。例如亚马逊和京东推出了直播渠道、直播视频用于产品的推广,亚马逊和沃尔玛经常使用社交媒体(推特、脸书、油管)等宣布产品交易并为产品做广告,京东也使用微博和微信等社交媒体进行类似的活动。本文作者将这种行为称为在线零售商的服务努力。
我们知道,对于在线零售商来说一般有两种常见的销售形式:代理和转售。一些在线零售商(京东、亚马逊、沃尔玛)同时提供这两种渠道,其他零售商只提供一种渠道——例如,淘宝和天猫仅提供代理渠道、唯品会仅提供转售渠道。作者还发现,对于同时提供两个渠道的在线零售商,一些制造商同时通过两种渠道销售,而一些制造商只选择其中一种渠道进行销售。例如在京东,苹果和华为仅通过转售渠道进行销售,而美的、戴森和格力则进行双渠道销售。
现有文献并无法解释为什么美的和戴森这样的制造商要在同一个平台同时通过两种渠道销售同样的产品。此外,现有理论也无法厘清像亚马逊和京东这样的在线零售商参与客户服务和促销活动(刺激其渠道的销量)如何影响产品的渠道结构。
研究问题:
- 制造商何时会通过在线零售商的代理和转售渠道销售同一产品?
- 渠道结构如何取决于代理渠道的佣金率和在线平台的服务成本?
- 如果与在线平台建立了转售关系的制造商开始通过代理渠道直接向消费者销售,对两家企业有何影响?
2 模型描述
2.1 基本设置
- 一个制造商和一个下游电商平台组成的二级供应链系统
制造商可以通过代理渠道或/和转售渠道销售她的商品。因此,有三个可能的渠道结构:转售渠道(Model R)、代理渠道(Model A)和双渠道(Model D)。
① 代理渠道(Model A)
制造商确定销售数量并向平台支付与零售价成正比的佣金率 r ( 0 < r < 1 ) r(0<r<1) r(0<r<1)。假设佣金率外生,
1.1 制造商决定销售量 q M q_M qM,平台决定服务努力程度 e e e
1.2 市场价格实现,企业获得收益
② 转售渠道(Model R)
制造商收取单位批发价格,平台决定销售数量。
2.1 制造商决定批发价格 w w w
2.2 平台观察到 w w w,决定订货量 q I q_I qI,并决定服务努力程度 e e e
2.3 市场价格实现,企业获得收益
③ 双渠道(Model D)
3.1 制造商决定批发价格 w w w
3.2 平台观察到 w w w,决定订货量 q I q_I qI
3.3 制造商决定销售量 q M q_M qM,同时平台决定服务努力程度 e e e
3.4 市场价格实现,企业获得收益
- 逆需求函数
p = α − q M − q I + e , p=\alpha-q_M-q_I+e, p=α−qM−qI+e,
其中$\alpha\ 表示潜在市场规模, 表示潜在市场规模, 表示潜在市场规模,q_M 和 和 和q_I 分别表示代理渠道和转售渠道下的产品销量, 分别表示代理渠道和转售渠道下的产品销量, 分别表示代理渠道和转售渠道下的产品销量,e 表示平台的服务努力程度。特别地,当代理渠道或转售渠道不存在时, 表示平台的服务努力程度。特别地,当代理渠道或转售渠道不存在时, 表示平台的服务努力程度。特别地,当代理渠道或转售渠道不存在时,q_M=0 或 或 或q_I=0$。
- 平台服务努力成本度量
k e 2 / 2 , ke^2/2, ke2/2,
其中 k k k表示平台的单位努力成本, k k k越大表明平台需要承担的努力成本越高。此外,努力成本关于努力水平呈现凸性,这种结构常见于许多研究努力水平的文献中。
- 集中式模型
我们首先考虑单个企业向消费者市场销售的集中式模型,并将其作为基准模型与其他三种渠道结构模型的结果进行比较。设 Q Q Q为总销售量,系统利润函数为 p Q − k e 2 / 2 pQ-ke^2/2 pQ−ke2/2。
2.2 代理模式
-
供应商利润最大化问题
max q M ( α − q M + e ) q M ( 1 − r ) \underset {q_M}{\max}(\alpha-q_M+e)q_M(1-r) qMmax(α−qM+e)qM(1−r) -
平台利润最大化问题
max e ( α − q M + e ) q M r − 1 2 k e 2 \underset {e}{\max}(\alpha-q_M+e)q_Mr-\frac{1}{2}ke^2 emax(α−qM+e)qMr−21ke2
2.3 转售模式
-
平台利润最大化问题
max e , q I α − q I + e − w ) q I − 1 2 k e 2 \underset {e,q_I}{\max}\alpha-q_I+e-w)q_I-\frac{1}{2}ke^2 e,qImaxα−qI+e−w)qI−21ke2 -
供应商利润最大化问题
max w w q I ^ ( w ) \underset {w}{\max} w\hat{q_I}(w) wmaxwqI^(w)
2.4 双渠道模式
-
供应商利润最大化问题
max q M ( α − q M − q I + e ) q M ( 1 − r ) \underset {q_M}{\max}(\alpha-q_M-q_I+e)q_M(1-r) qMmax(α−qM−qI+e)qM(1−r) -
平台利润最大化问题
max e ( α − q M − q I + e − w ) q I + α − q M − q I + e ) q M r − 1 2 k e 2 \underset {e}{\max}(\alpha-q_M-q_I+e-w)q_I+\alpha-q_M-q_I+e)q_Mr-\frac{1}{2}ke^2 emax(α−qM−qI+e−w)qI+α−qM−qI+e)qMr−21ke2
(注:三种模式均根据决策步骤,按照逆向归纳法求解)
3 主要结论
3.1 双渠道模式 v.s. 代理模式
令
π
I
X
,
π
M
X
\pi^X_I,\pi^X_M
πIX,πMX分别表示在销售模式
X
X
X下平台和供应商的销售利润(
X
∈
{
A
,
R
,
D
}
X\in\{A,R,D\}
X∈{A,R,D}),我们有:
π
I
D
>
π
I
A
,
π
M
D
>
π
M
A
,
π
I
D
+
π
I
M
>
π
I
A
+
π
M
A
\pi^D_I>\pi^A_I,\pi^D_M>\pi^A_M,\pi^D_I+\pi^M_I>\pi^A_I+\pi^A_M
πID>πIA,πMD>πMA,πID+πIM>πIA+πMA
作者发现,双渠道模式是完全优于代理模式的。这是因为在双渠道模式下,双重边际效应造成的损失可以被渠道灵活效应(channel flexibility effect)和渠道竞争效应(channel competition effect)所覆盖。具体解释如下:
双渠道模式下的销量和努力水平是高于代理模式的。当佣金率较高时,由于双渠道竞争的存在,双渠道模式下的总销量要高于代理模式,此时平台会付出更多的努力去满足此时的高销量市场;当佣金率逐渐下降时,由于渠道灵活效应的存在,有更多的销量将被转移至转售渠道上,此时双渠道模式下努力水平的下降量将低于代理模式。特别地,当佣金率为1时,双渠道模式将等价于代理模式。
3.2 双渠道模式 v.s. 转售模式
基于企业的利润,作者定义了四个区域,比较了企业在模型D(双渠道)和模型R(转售渠道)之间有不同的偏好。每家企业的渠道偏好取决于整体渠道效率以及供应链利润分配方式。
-
当佣金率较高或服务成本较高时,模型D的总供应链利润高于模型R。在区域A中,由于佣金率较高,在线零售商可以通过少量订购在模型D中获得供应链的主导份额,因此,在线零售商会选择双渠道模式,而制造商则会选转售模式。
-
在区域D中,由于佣金率较低,此时,与区域A情况相反,在线零售商会选择转售模式,而制造商则会选择双渠道模式
-
当佣金率较高时,在线零售商在双渠道模式获得的利润高于转售模式获得的利润(区域A);此外,当佣金率处于中间水平且服务成本高昂时,在线零售商在双渠道模式中获得更高的利润(区域B)。
-
当佣金率低,且服务成本高时,制造商会选择双渠道模式,在这个条件下,制造商激励在线零售商付出更多努力的动机较小,因此,制造商会收取更高的批发价格,将更多的销售额转移到代理渠道,从而在供应链利润中占据更多的份额。
综上:当在线零售商选择渠道结构时,如果佣金率较高,则在线零售商选择双渠道(区域A和区域B),否则则选择转售渠道;当制造商选择渠道结构时,如果服务成本较高且佣金率较低,制造商更喜欢双渠道(区域B和区域D);此外,如果佣金率和服务成本均较低,两家公司都会选择转售渠道(区域C),而当佣金率为中间值和服务成本较高,两家公司会在双渠道模式下取得均衡(区域B)。
此外,通过比较模型D和模型R,作者揭示了是否存在供应商侵占问题。区域ABCD,分别代表了四种可能的侵占结果,即输赢、双赢、双输和赢输。制造商在区域B和区域D的侵占总是使得制造商的境况更好,但使得在线零售平台在区域B的境况更好,而在区域D中的境况更差。因此,只有在平台的服务水平不太高,且产品佣金率处于中间水平时,才可能实现双赢。
4 编者思考(下述模型为编者团队的初步思考)
4.1 拓展
在许多关于线上平台的研究中,通常只考虑平台决策努力水平,然而,为了扩大产品市场需求,商家自身也会努力提升产品知名度。例如,在每年的促销季,京东、天猫和淘宝往往都会采取直播带货的形式,向顾客介绍产品。同时,这些产品的生产商家们也会在微博、微信公众号或抖音上向用户推广自家的产品。
在本次精读的文献中,作者考虑了平台决策努力水平,并将分散和集中两种供应链系统进行比较,以说明集中型供应链的协调性。但如果商家和平台都做出努力水平的决策,分散型供应链绩效是否还会低于集中型供应链绩效?
由此,根据代理和转售这两种销售模式,我们建立了两个简单的供应链模型,发现了一个较为直观的结论:无论是在代理还是转售模式下,当集中型供应链的努力成本较低时,分散型供应链绩效的确会比集中型供应链绩效要低;然而,当集中型供应链的努力成本较高时,分散型供应链绩效反而会高于集中型供应链绩效。具体建模过程如下所示。
4.1.1 模型描述
通过建立一个上游商家和下游平台所组成的二级供应链系统,考虑产量及努力水平决策,研究在代理和分销这两种模式下的供应链绩效问题。事件发生顺序如下:
- 集中型供应链
中心供应链决策产量 q c q_c qc及努力水平 e c e_c ec
- 代理模式供应链
商家决策努力水平 e s e_s es与产量 q s q_s qs,平台同时决策努力水平 e r e_r er
- 转售模式供应链
① 商家决策努力水平 e s e_s es与批发价 w w w
② 平台决策努力水平 e r e_r er与产量 q r q_r qr
4.1.2 利润函数
假设市场出清,市场总需求为 a a a,集中型供应链下的市场需求函数为 p c = a − q c + e c p_c=a-q_c+e_c pc=a−qc+ec,代理模式下的市场需求函数为 p s = a − q s + e s + e r p_s=a-q_s+e_s+e_r ps=a−qs+es+er,转售模式下的市场需求函数为 p r = a − q r + e s + e r p_r=a-q_r+e_s+e_r pr=a−qr+es+er。
- 集中型供应链
设
k
k
k表示集中型供应链的单位努力成本,
Π
c
\Pi_c
Πc为中心供应链绩效,我们有
Π
c
=
p
c
q
c
−
1
2
k
e
c
2
\Pi_c=p_cq_c-\frac{1}{2}ke^2_{c}
Πc=pcqc−21kec2
- 代理模式供应链
设
k
r
,
k
s
k_r,k_s
kr,ks分别表示平台和商家的单位努力成本,
ϕ
\phi
ϕ表示平台佣金抽成比例,
Π
r
A
,
Π
s
A
\Pi^A_r,\Pi^A_s
ΠrA,ΠsA分别表示代理模式下平台和商家的利润,
Π
c
A
\Pi^A_c
ΠcA为代理模式供应链总绩效,我们有
Π
r
A
=
ϕ
p
s
q
s
−
1
2
k
r
e
r
2
\Pi^A_r=\phi p_sq_s-\frac{1}{2}k_re^2_{r}
ΠrA=ϕpsqs−21krer2
Π
s
A
=
(
1
−
ϕ
)
p
s
q
s
−
1
2
k
s
e
s
2
\Pi^A_s=(1-\phi) p_sq_s-\frac{1}{2}k_se^2_{s}
ΠsA=(1−ϕ)psqs−21kses2
Π
c
A
=
Π
s
A
+
Π
r
A
\Pi^A_c=\Pi^A_s+\Pi^A_r
ΠcA=ΠsA+ΠrA
- 转售模式供应链
设
Π
r
R
,
Π
s
R
\Pi^R_r,\Pi^R_s
ΠrR,ΠsR分别表示转售模式下平台和商家的利润,
Π
c
R
\Pi^R_c
ΠcR为代理模式供应链总绩效,我们有
Π
r
R
=
(
p
r
−
w
)
q
r
−
1
2
k
r
e
r
2
\Pi^R_r=(p_r-w)q_r-\frac{1}{2}k_re^2_{r}
ΠrR=(pr−w)qr−21krer2
Π
s
R
=
w
q
r
−
1
2
k
s
e
s
2
\Pi^R_s=wq_r-\frac{1}{2}k_se^2_{s}
ΠsR=wqr−21kses2
Π
c
R
=
Π
s
R
+
Π
r
R
\Pi^R_c=\Pi^R_s+\Pi^R_r
ΠcR=ΠsR+ΠrR
4.1.3 结论
依据逆向归纳求得各供应链模式下的最优决策,并将集中型供应链绩效与两种销售模式下的供应链绩效进行比较,可以得到如下直观结论:
- 命题1:在代理模式下,若 k ≤ Δ A k\leq\Delta_A k≤ΔA,则 Π c A ≤ Π c \Pi^A_c\leq\Pi_c ΠcA≤Πc,此时分散型供应链绩效将不高于集中型供应链绩效;反之,若 k > Δ A k>\Delta_A k>ΔA,则 Π c A > Π c \Pi^A_c>\Pi_c ΠcA>Πc,分散型供应链绩效将高于集中型供应链绩效。其中 Δ A = k r k s 2 k r k s − ϕ k s − ( 1 − ϕ ) k r \Delta_A=\frac{k_rk_s}{2k_rk_s-\phi k_s-(1-\phi)k_r} ΔA=2krks−ϕks−(1−ϕ)krkrks。
- 命题2:在转售模式下,若 Δ R ≤ 0 \Delta_R\leq0 ΔR≤0或 Δ R > 0 , k ≤ Δ R \Delta_R>0,k\leq\Delta_R ΔR>0,k≤ΔR,则 Π c R ≤ Π c \Pi^R_c\leq\Pi_c ΠcR≤Πc,此时分散型供应链绩效将不高于集中型供应链绩效;反之,若 k > Δ R k>\Delta_R k>ΔR,则 Π c R > Π c \Pi^R_c>\Pi_c ΠcR>Πc,分散型供应链绩效将高于集中型供应链绩效。其中 Δ R = k r k s ( 3 k r k s − 2 k s − k r ) 2 k r k s ( 3 k r k s − 2 k s − k r ) − [ 2 k s ( 2 k r − 1 ) − k r ] 2 \Delta_R=\frac{k_rk_s(3k_rk_s-2k_s-k_r)}{2k_rk_s(3k_rk_s-2k_s-k_r)-[2k_s(2k_r-1)-k_r]^2} ΔR=2krks(3krks−2ks−kr)−[2ks(2kr−1)−kr]2krks(3krks−2ks−kr)。
4.2 引申思考
下面是编者团队对本次精读文章的引申思考,也欢迎各位读者朋友们积极留言,提供宝贵建议,推荐有趣文章!
- 当上游商家决策努力程度时,不同的竞争结构与竞争类型(数量或价格竞争)对供应链绩效会有怎样的影响?
- 商家除了在转售和代理这两种模式上出售产品外,有时候也会依托平台上入驻的第三方零售商进行销售。那么,第三方零售商家的存在对于制造商销售模式的选择会有怎样的影响?
- 商家除了通过线上平台销售产品外,有时也会选择建立自己的线上或线下直营店,这一行为被称作品牌商入侵(Supplier Encroachment)。那么,商家的直营策略对平台销售模式的选择会有怎样的影响?
下期预告,敬请期待(❀如有相关论文推荐,欢迎在下方留言❀)
- Xi Shan, Tao Li, Suresh P. Sethi (2021) A Responsive-Pricing Retailer Sourcing from Competing Suppliers Facing Disruptions.
Manufacturing & Service Operations Management 24(1):196-213.
https://doi.org/10.1287/opre.2022.2409