基于FFT的信号采样评价: ENOB SNR SFDR

背景

为了评估信号采集转换(ADC)系统的性能,我们通常使用一个或叠加2个正弦信号作为输入,通过ADC获得量化数据后,对数据进行快速傅里叶变换(FFT),并通过FFT结果做进一步的计算得到一组指标,通过这组指标衡量ADC系统的性能。

在实施上述评价方案时,需定义或约束以下条件。

  1. 信号采样率 Fs,例如 1G采样率下 Fs = 1e9 Hz。

  2. 采集信号点数N,例如为了实现FFT(快速的DFT),要求N=2^n,例如 N=8192。

  3. 定义信号分辨率 Fi = Fs/N。

  4. 输入的被测信号频率 Fin = n * Fi(n为自然数)。例如,1GHz采样率,8192点FFT,Fi = 122.0703125KHz,Fin 可以取 1000* Fi = 122.0703125MHz,或者 Fi = 1010* Fi = 123.291015625MHz。

  5. 输入信号应具备足够高的信号品质,例如不低于ADC量化精度的分辨率,足够低的相位噪声等。可以对信号做滤波等操作后,再输入被测系统。

参数

本人设计的一款ADC采样数据分析软件

dBFS

相对于满幅度的以dB为单位的度量。

以满足整数倍物理分辨率(采样率除以FFT点数)的单频正弦信号输入ADC,如果采样获得的量化值正好达到满幅度,则该信号功率定义为 0 dBFS。

SFDR

无杂散动态范围,以dBc为单位。

以满足整数倍物理分辨率的单频正弦信号输入ADC,信号功率应尽量接近 0dBFS,经过FFT功率谱分析,排除单频正弦信号所在频点和直流点,找到最大的信号功率值,该值与单频正弦信号频点的功率值之差即为SFDR。

SFDRxH23

排除第2次和第3次谐波之后的SFDR。

此情况下,需要根据信号频率和采样率,找到第2次和第3次谐波所在的频率结果位置,进而排除信号本身,以及第2,3次谐波,以及直流后,找到最大功率值,该值与信号功率值做差值。

Fspur

在第1 Nyquist域,排除信号之外的功率最强信号所在的频率点。

FspurxH23

在第1 Nyquist域,排除信号以及第2,3次谐波之后的功率最强信号所在的频点。

THD

以 dBc为单位的总谐波失真。

计算方法是前6次谐波总和除以信号功率值。

对于某一次FFT结果,可直接用(第2~6次谐波频点位置的信号功率之和)除以信号所在频点的功率值。

NSD

噪声谱密度,单位是 dBFS/Hz。

SNR

信号噪声比,单位是 dB。

信号功率与除去直流和前6次谐波(第2~6次谐波)后的各信号功率之比,再取 10*log 运算。

SNDR

信号与噪声及杂散比,单位是 dBc。

与SNR相比,此数值在计算噪声时需包含信号谐波,但仍然剔除直流。

IM3

三阶交叉调制畸变分量,单位是 dBc。

测试时对系统加入2个等功率单频正弦分量(频率为F1和F2),在频谱中找出 2*F2±F1,以及2*F1±F2所在位置的功率中的最大值,求最大交调分量与单个信号(F1或F2处)功率比。

ENOB_SNR

基于 SNR 计算的有效量化位数。

ENOB = (SNR - 1.76) / 6.02

ENOB_SNDR

基于 SNDR 计算的有效量化位数。

ENOB = (SNDR - 1.76) / 6.02

Phase

对FFT的某一个频点值的 虚部除以实部的商取反正切值,即得到该频点频率分量的相位值。

当一个正弦参考信号同时输入多个采样通道时,各采样通道上该信号频点所对应的相位值之差,即通道之间的相位差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值