拉普拉斯变换

正变换

拉普拉斯正变换是一种将一个函数 f ( t ) f(t) f(t)从时间域转换到复频域的变换,定义为:

F ( s ) = L { f ( t ) } = ∫ 0 ∞ e − s t f ( t ) d t F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st}f(t)dt F(s)=L{f(t)}=0estf(t)dt

其中, s = σ + j ω s=\sigma+j\omega s=σ+,是一个复数, σ \sigma σ ω \omega ω分别表示 s s s的实部和虚部。

在定义中, f ( t ) f(t) f(t)是定义在 [ 0 , ∞ ) [0,\infty) [0,)上的函数,而 F ( s ) F(s) F(s)是定义在复平面上某个区域内的函数。根据积分学的相关定理,当 f ( t ) f(t) f(t)满足一定条件时,拉普拉斯变换是可积的。

从定义中可以看出,拉普拉斯变换将时间域函数 f ( t ) f(t) f(t)变换到了复频域上的函数 F ( s ) F(s) F(s)。在复频域上, F ( s ) F(s) F(s)可以表示函数 f ( t ) f(t) f(t)的一些特征信息,如稳定性、收敛性、响应速度等等。因此,拉普拉斯变换在控制系统、信号处理等领域中,具有广泛的应用。

逆变换

拉普拉斯逆变换是一种将一个函数 F ( s ) F(s) F(s)从复频域转换到时间域的变换,定义为:

f ( t ) = L − 1 { F ( s ) } = 1 2 π j ∫ σ − j ∞ σ + j ∞ e s t F ( s ) d s f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty} e^{st}F(s)ds f(t)=L1{F(s)}=2πj1σjσ+jestF(s)ds

其中, F ( s ) F(s) F(s)是定义在某个区域内的复函数, s = σ + j ω s=\sigma+j\omega s=σ+ σ \sigma σ ω \omega ω分别表示 s s s的实部和虚部。

在定义中, F ( s ) F(s) F(s)是一个复数函数,其实部和虚部都可能影响逆变换的结果,因此逆变换的区域需要指定。一般来说,逆变换区域要包含 F ( s ) F(s) F(s)中的所有极点和奇点,并使逆变换积分收敛。

从定义中可以看出,拉普拉斯逆变换将复频域函数 F ( s ) F(s) F(s)变换到了时间域上的函数 f ( t ) f(t) f(t)。在时间域上, f ( t ) f(t) f(t)可以表示函数 F ( s ) F(s) F(s)的一些特征信息,如初始值、稳态响应等等。因此,拉普拉斯逆变换在控制系统、信号处理等领域中,也具有广泛的应用。

性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

拉普拉斯变换的性质如下:

  1. 线性性质:如果 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)的拉普拉斯变换分别为 F 1 ( s ) F_1(s) F1(s) F 2 ( s ) F_2(s) F2(s),那么对于任意实数 a a a b b b,有 f ( t ) = a f 1 ( t ) + b f 2 ( t ) f(t) = af_1(t) + bf_2(t) f(t)=af1(t)+bf2(t)的拉普拉斯变换为 F ( s ) = a F 1 ( s ) + b F 2 ( s ) F(s) = aF_1(s) + bF_2(s) F(s)=aF1(s)+bF2(s)

  2. 移位定理:如果 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),那么 f ( t − t 0 ) f(t-t_0) f(tt0)的拉普拉斯变换为 e − s t 0 F ( s ) e^{-st_0}F(s) est0F(s),其中 t 0 t_0 t0为常数。

  3. 尺度变换:如果 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),那么 f ( a t ) f(at) f(at)的拉普拉斯变换为 1 a F ( s a ) \dfrac{1}{a}F(\dfrac{s}{a}) a1F(as),其中 a a a为正常数。

  4. 微分定理:如果 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),那么 f ′ ( t ) f'(t) f(t)的拉普拉斯变换为 s F ( s ) − f ( 0 ) sF(s)-f(0) sF(s)f(0)

  5. 积分定理:如果 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),那么 ∫ 0 t f ( τ ) d τ \int_0^tf(\tau)d\tau 0tf(τ)dτ的拉普拉斯变换为 1 s F ( s ) \dfrac{1}{s}F(s) s1F(s)

  6. 初值定理:如果 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),那么 f ( 0 + ) = lim ⁡ s → ∞ s F ( s ) f(0^+)=\lim_{s\rightarrow\infty}sF(s) f(0+)=limssF(s)

  7. 终值定理:如果 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),那么 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow 0}sF(s) limtf(t)=lims0sF(s),如果 f ( t ) f(t) f(t)是一个有界函数,那么 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow 0}sF(s) limtf(t)=lims0sF(s)

  8. 卷积定理:若 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)的拉普拉斯变换分别为 F 1 ( s ) F_1(s) F1(s) F 2 ( s ) F_2(s) F2(s),则 f 1 ( t ) ∗ f 2 ( t ) f_1(t)\ast f_2(t) f1(t)f2(t)的拉普拉斯变换为 F 1 ( s ) F 2 ( s ) F_1(s)F_2(s) F1(s)F2(s),其中 ∗ \ast 表示卷积。

  9. 频域微分:若 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),则 t d f d t ( t ) t\dfrac{df}{dt}(t) tdtdf(t)的拉普拉斯变换为 − s F ( s ) -sF(s) sF(s)

  10. 频域积分:若 f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),则 ∫ 0 t τ f ( τ ) d τ \int_0^t\tau f(\tau)d\tau 0tτf(τ)dτ的拉普拉斯变换为 F ( s ) s 2 \dfrac{F(s)}{s^2} s2F(s)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经导师精心指导并认可、获 98 的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值