信号与系统 拉普拉斯变换

拉普拉斯变换

拉普拉斯变换在整个学习过程中一般出现在大题中,所以这也是信号与系统中比较重要的知识点,下来我们学习一下相关内容。

  1. 常见的拉普拉斯变换
  2. 拉普拉斯逆变换
  3. s域系统分析
  4. 系统的s域框图
  5. 单边拉氏变换与傅里叶变换
  6. 拉普拉斯变换性质

1.常见的拉普拉斯变换

时域s域
δ ( t ) \large\delta (t) δ(t) 1 , σ > − ∞ \large1,\sigma >-\infty 1,σ>
δ ′ ( t ) \large\delta ^{'}(t) δ(t) s , σ > − ∞ \large s,\sigma >-\infty s,σ>
ε ( t ) , 1 \large \varepsilon (t),1 ε(t),1 1 s , σ > 0 \Large \frac{1}{s},\sigma >0 s1,σ>0
e − s 0 t \Large e^{-s_{0}t} es0t 1 s + s 0 , s 0 = σ 0 + j ω 0 , σ > − σ 0 \Large\frac{1}{s+s_{0}},s_{0}=\sigma _{0}+j\omega _{0}, \sigma >-\sigma _{0} s+s01,s0=σ0+jω0,σ>σ0
cos ⁡ ω 0 t = e j ω 0 t + e − j ω 0 t 2 \Large \cos \omega _{0}t=\frac{e^{j\omega _{0}t}+e^{-j\omega _{0}t}}{2} cosω0t=2ejω0t+ejω0t s s 2 + ω 0 2 \Large\frac{s}{s^{2}+\omega ^{2}_{0}} s2+ω02s
sin ⁡ ω 0 t = e j ω 0 t − e − j ω 0 t 2 j \Large \sin \omega _{0}t=\frac{e^{j\omega _{0}t}-e^{-j\omega _{0}t}}{2j} sinω0t=2jejω0tejω0t ω 0 s 2 + ω 0 2 \Large\frac{\omega _{0}}{s^{2}+\omega ^{2}_{0}} s2+ω02ω0
g τ ( t − τ 2 ) ( g τ ( t − τ 2 ) \large g _{\tau }(t-\frac{\tau }{2} )(g _{\tau }(t-\frac{\tau }{2} ) gτ(t2τ)(gτ(t2τ) 0 < t < τ 0<t<\tau 0<t<τ范围内值为1,其余范围值为零。) 1 − e − s τ s , σ > − ∞ \Large\frac{1-e^{-s\tau }}{s} ,\sigma >-\infty s1esτ,σ>

对于有始周期信号 f τ ( t ) f_{\tau }(t) fτ(t)

已知 δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n T ) \delta _{T}(t)=\sum_{n=-\infty }^{\infty } \delta (t-nT) δT(t)=n=δ(tnT)
求解 f T ( t ) = f 0 t ∗ δ T ( t ) 。 f_{T}(t)=f_{0}{t}\ast \delta_{T}(t)。 fT(t)=f0tδT(t)

f T ( t ) ↔ F 0 ( s ) ⋅ ∑ n = 0 ∞ e − n T s f_{T}(t)\leftrightarrow F_{0}(s)\cdot \sum_{n=0}^{\infty } e^{-nTs} fT(t)F0(s)n=0enTs
变换后可得
F 0 ( s ) ⋅ ( 1 + e − T s + e − 2 T s + …   ) = F 0 ( s ) ⋅ 1 1 − e − T s F_{0}(s)\cdot(1+e^{-Ts}+e^{-2Ts}+\dots )= F_{0}(s)\cdot\frac{1}{1-e^{-Ts}} F0(s)(1+eTs+e2Ts+)=F0(s)1eTs1

所以
∑ n = 0 ∞ δ ( t − n T ) ↔ 1 1 − e − s T \colorbox{yellow}{$\sum_{n=0}^{\infty } \delta (t-nT)\leftrightarrow\frac{1}{1-e^{-sT}} $} n=0δ(tnT)1esT1

∑ n = 0 ∞ f 0 ( t − n T ) ↔ F 0 ( s ) 1 − e − T s \colorbox{yellow}{$\sum_{n=0 }^{\infty } f_{0} (t-nT)\leftrightarrow \frac{F_{0}(s)}{1-e^{-Ts}}$} n=0f0(tnT)1eTsF0(s)
注意这里求解的过程用到了拉普拉斯变换性质中的时移性质和时域卷积定理。
举个有关有始周期信号的例子,已知 1 1 − e − s T \frac{1}{1-e^{-sT}} 1esT1,求其时域周期信号函数。

1 1 − e − s T = 1 − e − s T 1 − e − 2 s T = ( 1 − e − s T ) ⋅ 1 1 − e − 2 s T \large\frac{1}{1-e^{-sT}}=\frac{1-e^{-sT}}{1-e^{-2sT}}=(1-e^{-sT})\cdot \frac{1}{1-e^{-2sT}} 1esT1=1e2sT1esT=(1esT)1e2sT1

( 1 − e − s T ) ⋅ 1 1 − e − 2 s T ↔ [ δ ( t ) − δ ( t − T ) ] ∗ ∑ n = 0 ∞ δ ( t − 2 n T ) \large (1-e^{-sT})\cdot \frac{1}{1-e^{-2sT}}\leftrightarrow[\delta (t)-\delta (t-T)]\ast \sum_{n=0}^{\infty } \delta (t-2nT) (1esT)1e2sT1[δ(t)δ(tT)]n=0δ(t2nT)
[ δ ( t ) − δ ( t − T ) ] ∗ ∑ n = 0 ∞ δ ( t − 2 n T ) = ∑ n = 0 ∞ δ ( t − 2 n T ) − ∑ n = 0 ∞ δ ( t − ( 2 n + 1 ) T ) [\delta (t)-\delta (t-T)]\ast \sum_{n=0}^{\infty } \delta (t-2nT)=\sum_{n=0}^{\infty } \delta (t-2nT)-\sum_{n=0}^{\infty }\delta (t-(2n+1)T) [δ(t)δ(tT)]n=0δ(t2nT)=n=0δ(t2nT)n=0δ(t(2n+1)T)

4.系统的s域框图

(1)数乘器

在这里插入图片描述

(2)加法器

在这里插入图片描述

(3)积分器

在这里插入图片描述
零状态时:
在这里插入图片描述
1 s \frac{1}{s} s1是s域积分器的系统函数

5. 单边拉氏变换与傅里叶变换

F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t , R e [ s ] > σ 0 F(s)=\int_{0}^{\infty } f(t)e^{-st}dt,Re[s]>\sigma _{0} F(s)=0f(t)estdt,Re[s]>σ0
F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(j\omega )=\int_{-\infty }^{\infty } f(t)e^{-j\omega t}dt F(jω)=f(t)ejωtdt
要对其关系进行讨论,f(t)必须为因果信号。
根据收敛坐标 σ 0 \sigma _{0} σ0的值可分为三种情况:
(1) σ 0 < 0 \sigma _{0}<0 σ0<0时,F(s)的收敛域包含 j ω j\omega jω轴。
F ( j ω ) = F ( s ) ∣ s = j ω F(j\omega)=F(s)|_{s=j\omega} F(jω)=F(s)s=jω
(2) σ 0 > 0 \sigma _{0}>0 σ0>0时, F ( j ω ) F(j\omega) F(jω)不存在。
举个例子

f ( t ) = e 2 t ε ( t ) ↔ F ( s ) = 1 s − 2 , σ > 2 f(t)=e^{2t}\varepsilon (t)\leftrightarrow F(s)=\frac{1}{s-2},\sigma>2 f(t)=e2tε(t)F(s)=s21,σ>2
所以不存在。

(3) σ 0 = 0 \sigma _{0}=0 σ0=0时,即F(s)的收敛边界为 j ω j\omega jω轴。
F ( j ω ) = lim ⁡ σ → 0 F ( s ) F(j\omega)=\lim_{\sigma \to 0} F(s) F(jω)=σ0limF(s)
F ( j ω ) = F ( s ) ∣ s = j ω + ∑ i = 1 N π K i δ ( ω − ω i ) F(j\omega)=F(s)|_{s=j\omega}+\sum_{i=1}^{N} \pi K_{i}\delta (\omega -\omega _{i}) F(jω)=F(s)s=jω+i=1NπKiδ(ωωi)
举个例子

当 f ( t ) = ε ( t ) ↔ F ( s ) = 1 s 当f(t)=\varepsilon (t)\leftrightarrow F(s)=\frac{1}{s} f(t)=ε(t)F(s)=s1
F ( j ω ) = F ( s ) ∣ s = j ω + π δ ( ω ) = 1 j ω + π δ ( ω ) F(j\omega)=F(s)|_{s=j\omega}+\pi \delta(\omega)=\frac{1}{j\omega}+\pi \delta(\omega) F(jω)=F(s)s=jω+πδ(ω)=jω1+πδ(ω)

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值