本文将简单介绍 Python 中的一个轻量级搜索工具 Whoosh,并给出相应的使用示例代码。
# Whoosh 简介
Whoosh 由 Matt Chaput 创建,它一开始是一个为 Houdini 3D 动画软件包的在线文档提供简单、快速的搜索服务工具,之后便慢慢成为一个成熟的搜索解决工具并已开源。
Whoosh 纯由 Python 编写而成,是一个灵活的,方便的,轻量级的搜索引擎工具,现在同时支持 Python2、3,其优点如下:
-
Whoosh 纯由 Python 编写而成,但很快,只需要 Python 环境即可,不需要编译器;
-
默认使用 Okapi BM25F 排序算法,也支持其他排序算法;
-
相比于其他搜索引擎,Whoosh 会创建更小的 index 文件;
-
Whoosh 中的 index 文件编码必须是 unicode;
-
Whoosh 可以储存任意的 Python 对象。
Whoosh 的官方介绍网站为:https://whoosh.readthedocs.io/en/latest/intro.html 。相比于 ElasticSearch 或者 Solr 等成熟的搜索引擎工具,Whoosh 显得更轻便,操作更简单,可以考虑在小型的搜索项目中使用。
# Index & query
对于熟悉 ES 的人来说,搜索的两个重要的方面为 mapping 和 query,也就是索引的构建以及查询,背后是复杂的索引储存、query 解析以及排序算法等。如果你有 ES 方面的经验,那么,对于 Whoosh 是十分容易上手的。
按照笔者的理解以及 Whoosh 的官方文档,Whoosh 的入门使用主要是 index 以及 query。搜索引擎的强大功能之一在于它能够提供全文检索,这依赖于排序算法,比如 BM25,也依赖于我们怎样储存字段。因此,index 作为名词时,是指字段的索引,index 作为动词时,是指建立字段的索引。而 query 会将我们需要查询的语句,通过排序算法,给出合理的搜索结果。
关于 Whoosh 的使用,在官文文档中已经给出了详细的说明,笔者在这里只给出一个简单的例子,来说明 Whoosh 如何能方便地提升我们的搜索体验。
# 示例代码
数据
本项目的示例数据为 poem.csv,下图为该数据集的前十行:
图片
poem.csv
字段
根据数据集的特征,我们创建四个字段(fields):title, dynasty, poet, content。创建的代码如下:
其中,ID 只能为一个单元值,不能分割为若干个词,常用于文件路径、URL、日期、分类;
TEXT 文件的文本内容,建立文本的索引并存储,支持词汇搜索;Analyzer 选择结巴中文分词器。
创建索引文件
接着,我们需要创建索引文件。我们利用程序先解析 poem.csv 文件,并将它转化为 index,写入到 indexdir 目录下。Python 代码如下:
index 创建成功后,会生成 indexdir 目录,里面含有上述 poem.csv 数据的各个字段的索引文件。
查询
index 创建成功后,我们就利用进行查询。
比如我们想要查询 content 中含有明月
的诗句,可以输入以下代码:
输出结果如下: