【机器学习】朴素贝叶斯方法


一、简介

  朴素贝叶斯法是基于贝叶斯定理特征条件假设的分类方法。
  对于给定的数据集

  1. 基于特征条件假设学习输入输出的联合概率分布
  2. 基于此模型,对给定的属入x,利用贝叶斯定理求出后验概率最大的输出y

该算法输入,输出,过程在后面朴素贝叶斯参数估计会细说。

二、朴素贝叶斯法的学习与分类

基本方法

输入空间: χ ⊆ R n 输入空间:\chi\subseteq\R^n 输入空间:χRn
输出空间: γ = { c 1 , c 2 , ⋯   , c k } 输出空间:\gamma=\{c_1,c_2,\cdots,c_k\} 输出空间:γ={ c1,c2,,ck}
输入特征向量: x i ∈ χ , ( i = 1 , 2 , ⋯   , N ) 输入特征向量:x_i\in\chi,(i=1,2,\cdots,N) 输入特征向量:xiχ(i=1,2,,N)
输出类标记: y i ∈ γ , ( i = 1 , 2 , ⋯   , N ) 输出类标记:y_i\in\gamma,(i=1,2,\cdots,N) 输出类标记:yiγ(i=1,2,,N)
训练数据集 T : T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } 训练数据集T:T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} 训练数据集TT={(x1,y1),(x2,y2),,(xN,yN)}
X 是定义在输入空间 χ 上的随机变量 X是定义在输入空间\chi上的随机变量 X是定义在输入空间χ上的随机变量
Y 是定义在输出空间 γ 上的随机变量 Y是定义在输出空间\gamma上的随机变量 Y是定义在输出空间γ上的随机变量
P ( X , Y ) 是 X 和 Y 的联合概率分布 P(X,Y)是X和Y的联合概率分布 P(X,Y)XY的联合概率分布
训练数据集 T 就是由 P ( X , Y ) 独立同分布产生 训练数据集T就是由P(X,Y)独立同分布产生 训练数据集T就是由P(X,Y)独立同分布产生

  1. 学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
    根据条件概率的定义,事件X在事件Y发生的条件下发生的概率记作: P ( X ∣ Y ) = P ( X , Y ) P ( Y ) P(X|Y)=\frac{P(X,Y)}{P(Y)} P(XY)=P(Y)P(X,Y)
    则推出: P ( X , Y ) = P ( X ∣ Y ) P ( Y ) P(X,Y)=P(X|Y)P(Y) P(X,Y)=P(XY)P(Y)
    要求 P ( X , Y ) P(X,Y) P(X,Y)必须先求先验概率分布 P ( Y ) P(Y) P(Y)和条件概率分布 P ( X ∣ Y ) P(X|Y) P(XY)
  • 先验概率分布: P ( Y = c k ) , k = 1 , 2 , ⋯   , K P(Y=c_k),k=1,2,\cdots,K P(Y=ck)k=1,2,,K
  • 条件概率分布: P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) , k = 1 , 2 , ⋯   , K P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},\cdots,X^{(n)}=x^{(n)}|Y=c_k),k=1,2,\cdots,K P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)k=1,2,,K
    x i ( j ) 是第 i 个样本的第 j 个特征 x_i^{(j)}是第i个样本的第j个特征 xi(j)是第i个样本的第j个特征

  假设 x ( j ) x^{(j)} x(j)可取值有 S j S_j Sj个, j = 1 , 2 , ⋯   , n j=1,2,\cdots,n j=1,2,,n Y Y Y可取值有 K K K个,那么该条件概率分布的参数个数为 K ∏ j = 1 n S j ( 指数级数量 ) K\prod_{j=1}^nS_j(指数级数量) Kj=1nSj(指数级数量)
为了使参数个数减少,使算法简单,可能会牺牲一点分类准确率,运用条件独立性假设
  条件独立性假设:用于分类的特征在类确定的条件下都是条件独立的。
记作: P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) \begin{aligned} P(X=x|Y=c_k)&=P(X^{(1)}=x^{(1)},\cdots,X^{(n)}=x^{(n)}|Y=c_k) \\ &=\prod_{j=1}^nP(X^{(j)}=x^{(j)}|Y=c_k) \end{aligned} P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)
条件独立假设下的该条件概率分布的参数个数为 K n S j ( 线性级数量 ) K n S_j(线性级数量) KnSj(线性级数量)

没有条件独立性假设:参数数量=特征数量和各特征可能取值数量的排列组合
有条件独立性假设:各个特征在相同条件下独立分布,参数数量=特征数量 x 各特征可能取值数量。

  1. 由贝叶斯定理求后验概率
  • 贝叶斯定理
    P ( Y = c k ∣ X =
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值