用户画像分析

用户画像是一种描述目标市场中特定用户群体特征和行为的概括。

这是华润超市的8类消费群体画像:

图片

01画像分析时的数据收集

用户画像中的用户特征通常包括几个方面:

  • 基本信息:例如年龄、性别、地理位置等。

  • 行为特征:例如购买行为、浏览历史、点赞数等。

  • 兴趣爱好:例如喜欢的品牌、产品类别等。

  • 社交关系:例如好友数量、关注数量等。

对应着,我们在进行用户画像分析时,也要通过问卷调查、用户访谈、满意度调查等方式,收集对应的原始用户数据:

  • 人口统计分析(Demographic profiling):这是最直接的类别,包括年龄、性别、职业和客户在哪里?他们在哪里购物,旅行?

  • 用户行为/喜好数据:通过跟踪和记录用户在网站或APP上的浏览行为、点击行为、购买行为等,可以收集到大量关于用户喜好和习惯的数据。

  • 社交媒体数据:社交媒体是收集用户数据的重要渠道。企业可以通过分析用户在社交媒体上的分享、点赞、评论等行为,获取用户的喜好和兴趣。

收集数据说起来简单,其实是画像分析中非常重要的一步,收集到的数据质量直接影响到用户分群是否正确,以及用户特征是否准确,常用的数据收集方法有:

  • 调查问卷:发送调查问卷给现有客户群,了解他们的意见、偏好和需求。可以使用在线工具或邮寄纸质问卷。

  • 监听社交媒体:通过社交媒体平台上的社交听取功能,收集客户对品牌和产品的反馈和评论。

  • 产品埋点数据:用已有的客户数据,如购买历史记录、交易量等信息,进行数据分析并提取有用信息。

  • 客户反馈:通过客户服务部门,收集客户的反馈和意见,包括电话、邮件和在线聊天等方式。

  • 第三方系统(如CRM系统):CRM(客户关系管理)系统可以帮助企业追踪客户行为、交易和交流,提供有用的信息和见解。

02用户模型搭建

用户模型搭建最常用的方法是通过聚类分析,获得用户分群。

聚类分析是根据分析对象的特定属性,将其聚成不同的群组,每一个群组我们都能描绘它的特征,也就是用户画像。在不同的用户画像基础上,我们对每一个群组设计不同的产品优化方案、营销活动。

聚类分析根据源数据的输入属性,将输入属性类似的数据聚在同一群。要求同一群内成员的相似性要愈高愈好,而不同群间成员的相异性则要愈高愈好。

比如在银行业中,希望将年龄、收入相似的客户聚在一起,年龄和收入就是输入字段,分析不需要设置目标字段。通常在预测型的数据分析中,才需要目标字段。

下图就是银行客户聚类分析的一个例子,大致分为了三类,年龄高收入低,年龄高收入高,年龄低收入高。

有了这个分类后,在此基础上,产品经理就可以设置针对性的产品,比如对第一类客户推销保险型产品,第三类推销高获利高风险产品。

图片

聚类算法是通过计算人之间的距离,将人自动分群。

在进行聚类分析时,需要注意选择合适的特征,并去掉异常值人群和极端人群,最后再对剩余人群进行分类或圈出不同的人群。

K-Means聚类能够自动地对多维数据进行聚合。

这个网址:K-means clustering, starting with 4 right-most points,可以通过多次刷新页面,来直观的了解不同的KMeans聚类计算过程。

计算完成后,就把我们导入的用户源数据分成了不同的组,就像以前教室分区一样:

图片

03案例分享

下面是小红书用户画像的一个搭建案例:
小红书早期以PGC内容连接消费者和商品的商业模式,以官方PGC为主,推广导流初始用户,积累社区用户,为产品由PGC社区转型UGC社区奠定基础。

快速建立用户口碑,形成传播,是产品初期比较重要的运营点。

所以,对用户进行评估时,不仅要用用户关注量、粉丝数、点赞数、收藏数、发布数之类的初级指标,还要尽量挖掘能反映用户整体情况的多维度评价指标,才能给到产品优化提供指导作用。评估用户需要一个完整的指标系统,要更全面“用户画像”指标评估体系,多维度多层次区分用户的质量情况。

多维度分析的目的是因为用户生命周期有阶段性,每个阶段要对产品用户定出不同的侧重点策略。

如:

  • 产品引入期用户对产品缺乏了解,处于观望忠诚度低,运营核心工作就是拉新获客以及促进新用户活跃;

  • 产品成长期用户对产品已经熟悉,但是使用频率还不高,这时运营核心工作是促进用户活跃、转化/付费、制造留存;

  • 产品稳定期用户对产品忠诚度较高,核心工作需要沉淀用户,留住用户;

  • 平台衰退期新产品或替代品出现,用户转向其他产品,这时核心工作就放在产品创新、用户召回,减少流失,留存。

下面是核心用户评估体系,共列出3个维度,内容生产指标,内容互动指标,内容价值指标,

3类指标下又包含若干类型数据,如下图:

图片

  • 内容生产指标,这个指标可以衡量一个社区内容生产的健康度。

  • 内容互动指标,这个指标是衡量整个社区用户的参与度和活跃度的。

  • 内容价值指标,这个指标可以衡量平台通过内容产生的实际价值和收入。

经过对这些维度指标的数据抓取,获取原始数据并剔除异常值。

接着在SPSS中用K-means方法进行聚类分析。经过聚类分析的结果,就可以得出几类用户群体。以下表格是用模拟数据划分出的几类用户群,仅供参考:

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值