清单
● 669. 修剪二叉搜索树
● 108.将有序数组转换为二叉搜索树
● 538.把二叉搜索树转换为累加树
LeetCode #669 修剪二叉搜索树
1. 题目
给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树不应该改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。可以证明,存在唯一的答案。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变
2. 思路
3. 代码实现
#递归
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root:
return root
if root.val < low:
return self.trimBST(root.right, low, high)
if root.val > high:
return self.trimBST(root.left, low, high)
root.left = self.trimBST(root.left, low, high)
root.right = self.trimBST(root.right, low, high)
return root
#迭代
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root:
return None
while root and (root.val < low or root.val > high):
if root.val < low:
root = root.right
else:
root = root.left
cur = root
while cur:
while cur.left and cur.left.val < low: #处理所有情况 因此用while
cur.left = cur.left.right
cur = cur.left
cur = root
while cur:
while cur.right and cur.right.val > high:
cur.right = cur.right.left
cur = cur.right
return root
LeetCode #108 将有序数组转化为二叉搜索树
1. 题目
一个整数数组nums,其中元素已经按升序排列,将其转换为一棵高度平衡二叉搜索树。
高度平衡二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树
2. 思路
借用数组中双指针的思路,分别构建左右两子树
3. 代码实现
class Solution:
def buildTree(self, nums, left, right):
if left > right:
return None
mid = left + (right - left) // 2
node = TreeNode(nums[mid])
node.left = self.buildTree(nums, left, mid - 1)
node.right = self.buildTree(nums, mid + 1, right)
return node
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
root = self.buildTree(nums, 0, len(nums)-1)
return root
LeetCode#538 把二叉搜索树转化为累加树
1. 题目
给出二叉搜索树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
节点的左子树仅包含键小于节点键的节点。节点的右子树仅包含键大于节点键的节点。左右子树也必须是二叉搜索树
2. 思路
双指针,一个指针用于遍历二叉树并累加,一个指针用于记录值
3. 代码实现
class Solution:
def travel(self, root):
stack = []
cur = root
while cur or stack:
if cur:
stack.append(cur)
cur = cur.right
else:
cur = stack.pop()
cur.val += self.pre
self.pre = cur.val
cur = cur.left
def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
self.pre = 0
self.travel(root)
return root