(3)RAG的核心——LLM如何根据prompt进行生成答案

RAG的生成阶段

在获取到问题和相关上下文后,生成模型(如 GPT 系列或 T5)会基于这些输入生成一个合成回答。模型会尝试理解输入问题的意图,并利用检索到的相关信息来生成一个连贯且合理的答案。这一步骤依赖于生成模型的能力,它需要能够有效地“理解”并利用上下文来构造有意义的回答。
在RAG模型的生成阶段,问题与上下文的融合是通过注意力机制(Attention Mechanism)来实现的。以下是具体的步骤,描述了模型如何通过注意力机制在生成每个词时“关注”问题和上下文的内容:

1. 编码输入:问题与上下文

在生成阶段,模型首先将用户的问题和检索到的上下文进行编码。通常,这通过预训练模型(例如BERT或Transformer架构)来完成,模型会为每个输入的词语生成一个向量表示,这些向量表示包含词语的语义信息。

2. 注意力机制的工作原理

注意力机制通过计算输入序列中每个词与其他词的“相关性”来进行信息聚焦。关键思想是生成过程中,模型需要决定“关注”输入中的哪些部分,以生成与上下文紧密相关的词。具体步骤如下:

计算注意力权重:模型通过将问题和上下文的向量输入到注意力层中,计算每个词之间的注意力权重。这些权重代表了当前生成的词应该“关注”输入中的哪个部分。例如,问题的某个关键词可能在回答时占据更大的权重,而上下文中的具体事实信息也可能有更高的权重。
自注意力机制(Self-Attention)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值