807补充(四)(高斯积分篇)

807补充(四)(高斯积分篇)

在这里插入图片描述

一.Jacobian矩阵(雅可比矩阵)

Jacobian矩阵可被视为是一种组织梯度向量的方法。在前三篇中,我们给出了梯度的定义与计算公式,借助梯度可以简单得出雅可比矩阵的定义。
D x f = def ( ∇ x f ) T \text{D}_{\mathbf x}\mathbf f\overset{\text{def}}{=}(\nabla_{\mathbf x} \mathbf f)^T Dxf=def(xf)T
易看出当雅可比矩阵为方阵时 f ( x ) 与 \mathbf f(\mathbf x)与 f(x) x \mathbf x x是同维度向量,若雅可比矩阵不为方阵,则从 f ( x ) \mathbf f(\mathbf x) f(x) x \mathbf x x的映射是降维映射或升维映射。

在微分几何中雅可比矩阵可以衡量两个函数之间的变换是否光滑。

二.Jacobian行列式

当雅可比矩阵为方阵时,雅可比矩阵的行列式可用于重积分换元,在二维情况下,有以下二重积分换元成立
∬ D1 f ( x , y ) dxdy = ∬ D2 f ( g ( u , v ) , h ( u , v ) ) ∣ J ∣ dudv x = g ( u , v ) y = h ( u , v ) \begin{aligned} \iint_{\text{D1}}f(x,y)\text{dxdy}&=\iint _\text{D2}f(g(u,v),h(u,v))|J|\text{dudv}\\ x&=g(u,v) \\ y&=h(u,v) \end{aligned} D1f(x,y)dxdyxy=D2f(g(u,v),h(u,v))Jdudv=g(u,v)=h(u,v)
其中
J = ∣ ∂ x ∂ y ∂ u ∂ v ∣ = det ⁡ ( [ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ] ) \begin{aligned} J&=|\frac{\partial x\partial y}{\partial u\partial v}|\\ &=\det(\begin{bmatrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{bmatrix}) \end{aligned} J=uvxy=det([uxuyvxvy])
即雅可比矩阵行列式, D1,D2 \text{D1,D2} D1,D2是变换前后的区域。

推广至n维空间也成立。

具体证明过程可参考

三.高斯积分

“物理学家只学会了求解高斯积分”

  1. I = ∫ − ∞ ∞ e − x 2 2 dx I=\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}\text{dx} I=e2x2dx

I = I 2 = ∫ − ∞ ∞ e − x 2 2 dx ∫ − ∞ ∞ e − y 2 2 dy = ∫ − ∞ ∞ ∫ − ∞ ∞ e − 1 / 2 ∗ ( x 2 + y 2 ) dxdy = ∫ 0 2 π d θ ∫ 0 ∞ e − 1 / 2 ∗ r 2 r dr = 2 π \begin{aligned} I&=\sqrt{I^2}\\ &=\sqrt{\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}\text{dx}\int_{-\infty}^{\infty}e^{-\frac{y^2}{2}}\text{dy}}\\ &=\sqrt{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-1/2*(x^2+y^2)}\text{dxdy}}\\ &=\sqrt{\int_{0}^{2\pi}\text{d}\theta\int_{0}^{\infty}e^{-1/2*r^2}r\text{dr}}\\ &=\sqrt{2\pi} \end{aligned} I=I2 =e2x2dxe2y2dy =e1/2(x2+y2)dxdy =02πdθ0e1/2r2rdr =2π

2. I = ∫ − ∞ ∞ e − a x 2 2 + j x dx I=\int_{-\infty}^{\infty}e^{-\frac{ax^2}{2}+jx}\text{dx} I=e2ax2+jxdx
I = ∫ − ∞ ∞ e − a x 2 2 + j x dx = ∫ − ∞ ∞ e − 1 2 a ( x 2 − 2 j a x + j 2 a 2 ) + j 2 2 a 2 dx = e j 2 2 a 2 ∫ − ∞ ∞ e − 1 2 a ( x − j a ) 2 d x = e j 2 2 a 2 2 π a \begin{aligned} I&=\int_{-\infty}^{\infty}e^{-\frac{ax^2}{2}+jx}\text{dx}\\ &=\int_{-\infty}^{\infty}e^{-\frac{1}{2}a(x^2-\frac{2j}{a}x+\frac{j^2}{a^2})+\frac{j^2}{2a^2}}\text{dx}\\ &=e^{\frac{j^2}{2a^2}}\int_{-\infty}^{\infty}e^{-\frac{1}{2}a(x-\frac{j}{a})^2}\text{d}x \\ &=e^{\frac{j^2}{2a^2}}\sqrt{\frac{2\pi}{a}} \end{aligned} I=e2ax2+jxdx=e21a(x2a2jx+a2j2)+2a2j2dx=e2a2j2e21a(xaj)2dx=e2a2j2a2π

​ 3.n重高斯积分: I = ∫ − ∞ ∞ e − 1 2 ∑ i = 1 n x i 2 d x 1 d x 2 ⋯ d x n = ∫ − ∞ ∞ e − 1 2 x T x d x I=\int_{-\infty}^{\infty}e^{-\frac{1}{2}\sum_{i=1}^{n}x_i^2}\text{d}x_1\text{d}x_2\cdots\text{d}x_n=\int_{-\infty}^{\infty}e^{-\frac{1}{2}\mathbf x^T\mathbf x}\text{d}\mathbf x I=e21i=1nxi2dx1dx2dxn=e21xTxdx

​ 由1易知 I = ( 2 π ) n 2 I=(2\pi)^{\frac{n}{2}} I=(2π)2n

4.二次型任意: I = ∫ − ∞ ∞ e − 1 2 x T K x d x I=\int_{-\infty}^{\infty}e^{-\frac{1}{2}\mathbf x^T\mathbf K\mathbf x}\text{d}\mathbf x I=e21xTKxdx, K \mathbf K K为正定矩阵。

​ 做分解 K = S T S \mathbf K=\mathbf S^T\mathbf S K=STS,使得 − 1 2 x T K x = − 1 2 ( S x ) T ( S x ) -\frac{1}{2}\mathbf x^T\mathbf K\mathbf x=-\frac{1}{2}(\mathbf S\mathbf x)^T(\mathbf S \mathbf x) 21xTKx=21(Sx)T(Sx),令 y = S x \mathbf y=\mathbf S\mathbf x y=Sx
I = ∫ − ∞ ∞ e − 1 2 x T K x d x = ∫ − ∞ ∞ e − 1 2 ( S x ) T ( S x ) d x = ∫ − ∞ ∞ e − 1 2 y T y ∣ ∂ x ∂ y ∣ d y = ∣ ∂ x ∂ y ∣ ∗ ( 2 π ) n 2 = ∣ S ∣ − 1 ∗ ( 2 π ) n 2 = ∣ K ∣ − 1 / 2 ∗ ( 2 π ) n 2 = ( 2 π ) n det ⁡ K \begin{aligned} I&=\int_{-\infty}^{\infty}e^{-\frac{1}{2}\mathbf x^T\mathbf K\mathbf x}\text{d}\mathbf x\\ &=\int_{-\infty}^{\infty}e^{-\frac{1}{2}(\mathbf S\mathbf x)^T(\mathbf S \mathbf x)}\text{d}\mathbf x\\ &=\int_{-\infty}^{\infty}e^{-\frac{1}{2}\mathbf y^T\mathbf y}|\frac{\partial \mathbf x}{\partial \mathbf y}|\text{d}\mathbf y\\ &=|\frac{\partial \mathbf x}{\partial \mathbf y}|*(2\pi)^{\frac{n}{2}}\\ &=|\mathbf S|^{-1}*(2\pi)^{\frac{n}{2}}\\ &=|\mathbf K|^{-1/2}*(2\pi)^{\frac{n}{2}}\\ &=\sqrt{\frac{(2\pi)^n}{\det\mathbf K}} \end{aligned} I=e21xTKxdx=e21(Sx)T(Sx)dx=e21yTyyxdy=yx(2π)2n=S1(2π)2n=K1/2(2π)2n=detK(2π)n
5. I = ∫ − ∞ ∞ e − 1 2 x T K x + b T x d x I=\int_{-\infty}^{\infty}e^{-\frac{1}{2}\mathbf x^T\mathbf K\mathbf x+\mathbf b^T\mathbf x}\text{d}\mathbf x I=e21xTKx+bTxdx
− 1 2 x T K x + b T x = − 1 2 ( x − K − 1 b ) T K ( x − K − 1 b ) + 1 2 b T K − 1 b -\frac{1}{2} \mathbf{x}^T \mathbf{K} \mathbf{x}+\mathbf{b}^T \mathbf{x}=-\frac{1}{2}\left(\mathbf{x}-\mathbf{K}^{-1} \mathbf{b}\right)^T \mathbf{K}\left(\mathbf{x}-\mathbf{K}^{-1} \mathbf{b}\right)+\frac{1}{2} \mathbf{b}^T \mathbf{K}^{-1} \mathbf{b} 21xTKx+bTx=21(xK1b)TK(xK1b)+21bTK1b

​ 可知 I = ( 2 π ) n det ⁡ K e 1 2 b T K − 1 b I=\sqrt{\frac{(2\pi)^n}{\det\mathbf K}}e^{\frac{1}{2}\mathbf b^T\mathbf K^{-1}\mathbf b} I=detK(2π)n e21bTK1b

四.例

(1)n维高斯分布的表达式为 p ( x ) = 1 ( 2 π ) n 2 1 det ⁡ ∣ Σ ∣ e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) p(\mathbf x)=\frac{1}{(2\pi)^{\frac{n}{2}}}\frac{1}{\sqrt{\det|\Sigma|}}e^{-\frac{1}{2}(\mathbf x-\mu)^T\Sigma^{-1}(\mathbf x-\mu)} p(x)=(2π)2n1detΣ 1e21(xμ)TΣ1(xμ)
∫ − ∞ ∞ p ( x ) d x = 1 ( 2 π ) n 2 1 det ⁡ ∣ Σ ∣ ∫ − ∞ ∞ e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) d x = 1 ( 2 π ) n 2 1 det ⁡ ∣ Σ ∣ ∗ ∫ − ∞ ∞ e − 1 2 x T Σ − 1 x d x = 1 \begin{aligned} \int_{-\infty}^{\infty} p(\mathbf x)\text{d}\mathbf x&=\frac{1}{(2\pi)^{\frac{n}{2}}}\frac{1}{\sqrt{\det|\Sigma|}}\int_{-\infty}^{\infty}e^{-\frac{1}{2}(\mathbf x-\mu)^T\Sigma^{-1}(\mathbf x-\mu)}\text{d}\mathbf x\\ &=\frac{1}{(2\pi)^{\frac{n}{2}}}\frac{1}{\sqrt{\det|\Sigma|}}*\int_{-\infty}^{\infty}e^{-\frac{1}{2}\mathbf x^T\Sigma^{-1}\mathbf x}\text{d}\mathbf x\\ &=1 \end{aligned} p(x)dx=(2π)2n1detΣ 1e21(xμ)TΣ1(xμ)dx=(2π)2n1detΣ 1e21xTΣ1xdx=1
​ (2)巴氏距离(Bhattacharyya distance),其定义为
B D ( p ( x ) , q ( x ) ) = − log ⁡ ∫ p ( x ) , q ( x ) d x BD(p(\mathbf x),q(\mathbf x))=-\log \int\sqrt{p(\mathbf x),q(\mathbf x)}\text{d}\mathbf x BD(p(x),q(x))=logp(x),q(x) dx
​ 对于两个正态分布来说,它们的巴氏距离是以下积分的负对数
∫ p ( x ) q ( x ) d x = 1 ( 2 π ) 2 n det ⁡ ( Σ p Σ q ) 4 × ∫ exp ⁡ { − 1 4 ( x − μ p ) ⊤ Σ p − 1 ( x − μ p ) − 1 4 ( x − μ q ) ⊤ Σ q − 1 ( x − μ q ) } d x \begin{aligned} \int \sqrt{p(\boldsymbol{x}) q(\boldsymbol{x})} d \boldsymbol{x}&=\frac{1}{\sqrt[4]{(2 \pi)^{2 n} \operatorname{det}\left(\boldsymbol{\Sigma}_p \boldsymbol{\Sigma}_q\right)}} \times \int \exp \left\{-\frac{1}{4}\left(\boldsymbol{x}-\boldsymbol{\mu}_p\right)^{\top} \boldsymbol{\Sigma}_p^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_p\right)-\frac{1}{4}\left(\boldsymbol{x}-\boldsymbol{\mu}_q\right)^{\top} \boldsymbol{\Sigma}_q^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_q\right)\right\} d \boldsymbol{x} \end{aligned} p(x)q(x) dx=4(2π)2ndet(ΣpΣq) 1×exp{41(xμp)Σp1(xμp)41(xμq)Σq1(xμq)}dx
y = x − μ p , Δ = μ p − μ q \boldsymbol{y}=\boldsymbol{x}-\boldsymbol{\mu}_p, \boldsymbol{\Delta}=\boldsymbol{\mu}_p-\boldsymbol{\mu}_q y=xμp,Δ=μpμq,换元可得
∫ exp ⁡ { − 1 4 y ⊤ Σ p − 1 y − 1 4 ( y + Δ ) ⊤ Σ q − 1 ( y + Δ ) } d y = ∫ exp ⁡ { − 1 4 y ⊤ ( Σ p − 1 + Σ q − 1 ) y − 1 2 Δ ⊤ Σ q − 1 y − 1 4 Δ ⊤ Σ q − 1 Δ } d y = ∫ exp ⁡ { − 1 2 y ⊤ ( Σ p − 1 Σ Σ q − 1 ) y − 1 2 Δ ⊤ Σ q − 1 y − 1 4 Δ ⊤ Σ q − 1 Δ } d y \begin{aligned} & \int \exp \left\{-\frac{1}{4} \boldsymbol{y}^{\top} \boldsymbol{\Sigma}_p^{-1} \boldsymbol{y}-\frac{1}{4}(\boldsymbol{y}+\boldsymbol{\Delta})^{\top} \boldsymbol{\Sigma}_q^{-1}(\boldsymbol{y}+\boldsymbol{\Delta})\right\} d \boldsymbol{y} \\ = & \int \exp \left\{-\frac{1}{4} \boldsymbol{y}^{\top}\left(\boldsymbol{\Sigma}_p^{-1}+\boldsymbol{\Sigma}_q^{-1}\right) \boldsymbol{y}-\frac{1}{2} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}_q^{-1} \boldsymbol{y}-\frac{1}{4} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}_q^{-1} \boldsymbol{\Delta}\right\} d \boldsymbol{y} \\ = & \int \exp \left\{-\frac{1}{2} \boldsymbol{y}^{\top}\left(\boldsymbol{\Sigma}_p^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_q^{-1}\right) \boldsymbol{y}-\frac{1}{2} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}_q^{-1} \boldsymbol{y}-\frac{1}{4} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}_q^{-1} \boldsymbol{\Delta}\right\} d \boldsymbol{y} \end{aligned} ==exp{41yΣp1y41(y+Δ)Σq1(y+Δ)}dyexp{41y(Σp1+Σq1)y21ΔΣq1y41ΔΣq1Δ}dyexp{21y(Σp1ΣΣq1)y21ΔΣq1y41ΔΣq1Δ}dy
其中 Σ = 1 2 ( Σ p + Σ q ) \boldsymbol{\Sigma}=\frac{1}{2}\left(\boldsymbol{\Sigma}_p+\boldsymbol{\Sigma}_q\right) Σ=21(Σp+Σq)

最后积分的结果为 ( 2 π ) n det ⁡ ( Σ q Σ − 1 Σ p ) exp ⁡ { − 1 8 Δ ⊤ Σ − 1 Δ } \sqrt{(2 \pi)^n \operatorname{det}\left(\boldsymbol{\Sigma}_q \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_p\right)} \exp \left\{-\frac{1}{8} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Delta}\right\} (2π)ndet(ΣqΣ1Σp) exp{81ΔΣ1Δ}

也可直接利用如下公式计算
− 1 2 ( x − m 1 ) T Σ 1 − 1 ( x − m 1 ) − 1 2 ( x − m 2 ) T Σ 2 − 1 ( x − m 2 ) = − 1 2 ( x − m c ) T Σ c − 1 ( x − m c ) + C Σ c − 1 = Σ 1 − 1 + Σ 2 − 1 m c = ( Σ 1 − 1 + Σ 2 − 1 ) − 1 ( Σ 1 − 1 m 1 + Σ 2 − 1 m 2 ) C = 1 2 ( m 1 T Σ 1 − 1 + m 2 T Σ 2 − 1 ) ( Σ 1 − 1 + Σ 2 − 1 ) − 1 ( Σ 1 − 1 m 1 + Σ 2 − 1 m 2 ) − 1 2 ( m 1 T Σ 1 − 1 m 1 + m 2 T Σ 2 − 1 m 2 ) \begin{aligned} & -\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_1\right)^T \boldsymbol{\Sigma}_1^{-1}\left(\mathbf{x}-\mathbf{m}_1\right) -\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_2\right)^T \mathbf{\Sigma}_2^{-1}\left(\mathbf{x}-\mathbf{m}_2\right) \\ & =-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_c\right)^T \boldsymbol{\Sigma}_c^{-1}\left(\mathbf{x}-\mathbf{m}_c\right)+C \\ & \boldsymbol{\Sigma}_c^{-1}=\boldsymbol{\Sigma}_1^{-1}+\boldsymbol{\Sigma}_2^{-1} \\ & \mathbf{m}_c=\left(\boldsymbol{\Sigma}_1^{-1}+\boldsymbol{\Sigma}_2^{-1}\right)^{-1}\left(\boldsymbol{\Sigma}_1^{-1} \mathbf{m}_1+\boldsymbol{\Sigma}_2^{-1} \mathbf{m}_2\right) \\ & C=\frac{1}{2}\left(\mathbf{m}_1^T \boldsymbol{\Sigma}_1^{-1}+\mathbf{m}_2^T \boldsymbol{\Sigma}_2^{-1}\right)\left(\boldsymbol{\Sigma}_1^{-1}+\boldsymbol{\Sigma}_2^{-1}\right)^{-1}\left(\boldsymbol{\Sigma}_1^{-1} \mathbf{m}_1+\boldsymbol{\Sigma}_2^{-1} \mathbf{m}_2\right) \\ & -\frac{1}{2}\left(\mathbf{m}_1^T \boldsymbol{\Sigma}_1^{-1} \mathbf{m}_1+\mathbf{m}_2^T \boldsymbol{\Sigma}_2^{-1} \mathbf{m}_2\right) \\ & \end{aligned} 21(xm1)TΣ11(xm1)21(xm2)TΣ21(xm2)=21(xmc)TΣc1(xmc)+CΣc1=Σ11+Σ21mc=(Σ11+Σ21)1(Σ11m1+Σ21m2)C=21(m1TΣ11+m2TΣ21)(Σ11+Σ21)1(Σ11m1+Σ21m2)21(m1TΣ11m1+m2TΣ21m2)

所以最终
B D ( p ( x ) , q ( x ) ) = − log ⁡ ( 2 π ) n det ⁡ ( Σ q Σ − 1 Σ p ) ( 2 π ) 2 n det ⁡ ( Σ p Σ q ) 4 exp ⁡ { − 1 8 Δ ⊤ Σ − 1 Δ } = − log ⁡ det ⁡ ( Σ p Σ q ) 4 det ⁡ ( Σ ) exp ⁡ { − 1 8 Δ ⊤ Σ − 1 Δ } = 1 2 log ⁡ det ⁡ ( Σ ) det ⁡ ( Σ p Σ q ) + 1 8 ( μ p − μ q ) ⊤ Σ − 1 ( μ p − μ q ) \begin{aligned} B D(p(\boldsymbol{x}), q(\boldsymbol{x})) & =-\log \frac{\sqrt{(2 \pi)^n \operatorname{det}\left(\boldsymbol{\Sigma}_q \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_p\right)}}{\sqrt[4]{(2 \pi)^{2 n} \operatorname{det}\left(\boldsymbol{\Sigma}_p \boldsymbol{\Sigma}_q\right)}} \exp \left\{-\frac{1}{8} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Delta}\right\} \\ & =-\log \frac{\sqrt[4]{\operatorname{det}\left(\boldsymbol{\Sigma}_p \boldsymbol{\Sigma}_q\right)}}{\sqrt{\operatorname{det}(\boldsymbol{\Sigma})}} \exp \left\{-\frac{1}{8} \boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Delta}\right\} \\ & =\frac{1}{2} \log \frac{\operatorname{det}(\boldsymbol{\Sigma})}{\sqrt{\operatorname{det}\left(\boldsymbol{\Sigma}_p \boldsymbol{\Sigma}_q\right)}}+\frac{1}{8}\left(\boldsymbol{\mu}_p-\boldsymbol{\mu}_q\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_p-\boldsymbol{\mu}_q\right) \end{aligned} BD(p(x),q(x))=log4(2π)2ndet(ΣpΣq) (2π)ndet(ΣqΣ1Σp) exp{81ΔΣ1Δ}=logdet(Σ) 4det(ΣpΣq) exp{81ΔΣ1Δ}=21logdet(ΣpΣq) det(Σ)+81(μpμq)Σ1(μpμq)

  • 16
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值