model.eval()是什么

model.eval()

不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化,pytorch框架会自动把BN和Dropout固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层影响结果。

这段代码定义了一个名为generate的方法,用于生成分类模型。具体实现过程如下: 1. `if self.backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:`:判断模型的主干网络是否为vit_b_16、swin_transformer_tiny、swin_transformer_small、swin_transformer_base中的一种,如果不是则执行下一步,否则执行else语句。 2. `self.model = get_model_from_name[self.backbone](num_classes=self.num_classes, pretrained=False)`:调用get_model_from_name函数,通过主干网络名称获取对应的分类模型,并将类别总数作为参数传递给该函数,获取的模型赋值给self.model变量。 3. `else:`:如果模型的主干网络为vit_b_16、swin_transformer_tiny、swin_transformer_small、swin_transformer_base中的一种,则执行下面的代码。 4. `self.model = get_model_from_name[self.backbone](input_shape=self.input_shape, num_classes=self.num_classes, pretrained=False)`:调用get_model_from_name函数,通过主干网络名称获取对应的分类模型,并将输入图像大小和类别总数作为参数传递给该函数,获取的模型赋值给self.model变量。 5. `device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')`:判断当前设备是否支持GPU,如果支持则使用GPU进行计算,否则使用CPU进行计算。 6. `self.model.load_state_dict(torch.load(self.model_path, map_location=device))`:从模型文件中加载模型参数,并将其赋值给self.model。 7. `self.model = self.model.eval()`:将self.model设置为评估模式,即固定住模型参数,停止模型训练。 8. `print('{} model, and classes loaded.'.format(self.model_path))`:打印模型和类别文件已经加载的信息。 9. `if self.cuda:`:如果使用GPU进行计算,则执行下面的语句。 10. `self.model = nn.DataParallel(self.model)`:将模型转换为多GPU并行计算模型。 11. `self.model = self.model.cuda()`:将模型移动到GPU上进行计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yuezero_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值