基于平移距离的知识图谱推理模型(TransE、TransH、TransR、TransD、RotatE)

TransE

将关系视为低维向量空间中的头实体到尾实体的平移

训练目标:

最小化正确的三元组与错误的三元组之间的分数差距。具体来说,对于正确的三元组(头实体,关系,尾实体),TransE希望满足公式中的近似关系,而对于错误的三元组(头实体,关系,错误的尾实体),TransE希望分数差距大于某个阈值。

  • S 是包含正确三元组的集合
  • S′ 是包含错误三元组的集合
  • d(x,y) 是向量 x 和y之间的距离度量,通常使用 L1 范数或 L2 范数
  • γ 是一个边际间隔参数
  • [z] +是一个阶跃函数,表示当 z 大于零时取值为 z,否则取值为零

损坏三元组由训练三元组用随机实体替换头部或尾部组成,但不能同时替换。

局限性:

TransE模型在处理多对一、多对多、自反关系的会有很多局限性。

如将三元组(诺兰,导演,《

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值