做这个题之前我们先来看另一道题,Ac wing122题,糖果传递
对于该题有上式的推导结果,我们要求的结果就是让x1+x2+……+xn的结果最小,而x1到xn都是以x1为自变量,所以答案就又变成了,给定上图中最后一步标号的n个点,找到一个点x1使得它到这n个点的距离和最小,所以只需要将这n个点存到一个数组中,排一下序,算出所有点到中间点的距离之和即可(选中间点作为x1),该题的难点在于通过问题抽象出上面图中的环,根据环中的信息列出等式并进一步推导的过程。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=1e6+10;
long long a[N];
int main()
{
int n;
cin>>n;
long long sum=0;//相加会爆int,所以要用long long
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);//输入ai
sum+=a[i];
}
sum/=n;//先求出平均数
long long ans=0;
for(int i=n;i>1;i--)
{
a[i]=sum-a[i]+a[i+1];//根据ai算出xi
}
a[1]=0;
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
ans+=abs(a[i]-a[(n+1)/2]);//求到中点x(n+1)/2的距离和
}
cout<<ans<<endl;
return 0;
}
现在我们回到这个题,在知道糖果传递这个题的解法后,对于这个题其实就明了了,我们只需要将每一行cl喜欢的摊点数和每一列喜欢的摊点数分别记录在2个数组中,对这2个数组分别进行上题中a数组的操作求出2个值ans1和ans2,再根据题目的要求进行输出即可。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=1E5+10;
int n,m,t;
int row[N],col[N];
pair<int,int>p[N];
int main()
{
cin>>n>>m>>t;
int cnt=0;
for(int i=1;i<=t;i++)
{
cin>>p[i].first>>p[i].second;
row[p[i].first]++;
col[p[i].second]++;
}
long long sum=0;
for(int i=1;i<=n;i++)
sum+=row[i];
sum/=n;
long long ans1=0,ans2=0;
for(int i=n;i>1;i--)
row[i]=sum-row[i]+row[i+1];
row[1]=0;
sort(row+1,row+1+n);
for(int i=1;i<=n;i++)
ans1+=abs(row[i]-row[(n+1)/2]);
sum=0;
for(int i=1;i<=m;i++)
sum+=col[i];
sum/=m;
for(int i=m;i>1;i--)
col[i]=sum-col[i]+col[i+1];
col[1]=0;
sort(col+1,col+1+m);
for(int i=1;i<=m;i++)
ans2+=abs(col[i]-col[(m+1)/2]);
if((t<m&&t<n)||(t%m&&t%n))
cout<<"impossible"<<endl;
else if(t%m==0&&t%n==0)
{
cout<<"both"<<" ";
cout<<ans1+ans2<<endl;
}
else if(t%n==0)
{
cout<<"row"<<" ";
cout<<ans1<<endl;
}
else if(t%m==0)
{
cout<<"column"<<" ";
cout<<ans2<<endl;
}
return 0;
}