数据集制作后,需要整理成modelnet数据集格式,才能输入网络训练
一、数据集文件格式要求
格式必须完全按照这个要求来
data
-modelnet40_normal_resampled
-elephant(类别)
-elephant_0001.txt(数据导出的txt文件)
-elephant_0002.txt(数据导出的txt文件)
..................
-hand(类别)
-hand_0001.txt(数据导出的txt文件)
-hand_0002.txt(数据导出的txt文件)
..............
-filelist.txt(存放所有txt文件路径)
{elephant/elephant_0001.txt
elephant/elephant_0002.txt
hand/hand_0001.txt
hand/hand_0002.txt}
-modelnet40_shape_names.txt(存放类别名称)
elephant
hand
-moedelnet40_test.txt(存放测试集名称)
{elephant_0001
hand_0001}
-modelnet40_train.txt
{elephant_0002
hand_0002}
注意:1.文件夹名字只能修改类别名,且相应txt文件内容也要相应更改
2.类别名下的txt文件命名,需按{类别名_0001.txt}格式命名
二、点云数据集txt文本格式要求
我们自己通过cloudcompare导出的数据集,有七列,最中间一列是不需要的,需要进行删除
#自制数据集
# import pandas as pd
#
# # 读取数据
# data = pd.read_csv('hand_0001.txt', delimiter=',', header=None)
#
# # 删除第4列(索引为3)
# data = data.drop(columns=[3])
#
# # 保存新的数据到新文件
# data.to_csv('hand_0001.txt', sep=',', header=False, index=False)