【数据结构】线段树

例题1:

给定一个正整数数列 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an,每一个数都在 0 ∼ p − 1 0 \sim p-1 0p1 之间。 可以对这列数进行两种操作:

  1. 添加操作:向序列后添加一个数,序列长度变成 n + 1 n+1 n+1
  2. 询问操作:询问这个序列中最后 L L L 个数中最大的数是多少。

程序运行的最开始,整数序列为空。 一共要对整数序列进行 m m m 次操作。 写一个程序,读入操作的序列,并输出询问操作的答案。
数据范围

1 ≤ m ≤ 2 × 1 0 5 1 \le m \le 2 \times 10^5 1m2×105
1 ≤ p ≤ 2 × 1 0 9 1 \le p \le 2 \times 10^9 1p2×109
0 ≤ t < p 0 \le t < p 0t<p

这道题看第一眼:暴力,再看一眼:爆炸(bushi TLE。
这道题目就可以用我们今天要学的线段树来解决。

线段树的思路

线段树是一棵二叉树,它可以在很低的时间复杂度内完成一个序列的单点修改、区间修改、区间查询(最大数,最小数、求和等等)等的操作, [ 1 , n ] [1, n] [1,n] 线段树支持的所有操作都可以将时间复杂度控制在 O ( l o g   n ) O(log\ n) O(log n)
线段树俗称段错误树,因调试时经常段错误而得名
它的的思路很好理解, 顾名思义,它就是一个节点为线段的树;假设我们要用线段树维护一个区间 [ 1 , 10 ] [1, 10] [1,10]
在这里插入图片描述

如何存储线段树

我们直接拿一个结构体来存储线段树,每一个节点都是一段区间,拿刚才的例题举例:

struct Node {
    int l, r;	//	区间的左端点和右端点
    int v;  //  区间[l, r]中的最大值
    //	这里可以存储你要维护的任何信息,例如最大/最小值,区间和等
} tr[N * 4];

一棵线段树的根节点编号为 1 1 1 ,设一个不为根节点的节点编号为 u u u ,则这个节点的父节点是 ⌊ u 2 ⌋ \lfloor {\frac{u}{2}} \rfloor 2u ,它的左儿子编号为 2 × u 2 \times u 2×u ,右儿子编号为 2 × u + 1 2 \times u + 1 2×u+1 ;因为一颗线段树最大是一棵满二叉树,N个叶子节点的满二叉树最多有 N + N ÷ 2 + N ÷ 4 + . . . + 2 + 1 = 2 N − 1 N + N \div 2 + N \div 4 + ... + 2 + 1 = 2N - 1 N+N÷2+N÷4+...+2+1=2N1 个节点;而最后一层(可以参考上面的 [ 1 , 10 ] [1, 10] [1,10] 线段树图)最多还会剩余 2 N 2N 2N 个节点。所以线段树通常需要开 4 N 4N 4N 倍的空间。

如何建立线段树

线段树中如果表示的区间为 [ l , r ] [l, r] [l,r] 且这个节点不为叶子节点( l ≠ r l \ne r l=r),则我们有一个 m i d = ⌊ l + r 2 ⌋ mid = \lfloor{\frac{l + r}{2}}\rfloor mid=2l+r , 这个点的左子树即为 [ l , m i d ] [l, mid] [l,mid] ,右子树即为 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r] ,递归建树即可。
代码:

void pushup(int u) {    //  由子节点的最大值,来更新父节点的信息
    tr[u].v = max(tr[u * 2].v, tr[u * 2 + 1].v);
}
void build(int u, int l, int r) {
    tr[u] = {l, r};
    if (l == r) return ;
    int mid = l + r >> 1;
    build(u * 2, l, mid), build(u * 2 + 1, mid + 1, r);
}

如何进行查询

递归查询,直到我们树中结点已经完全包含在我们需要查询的区间中
代码:

int query(int u, int l, int r) {
    if (tr[u].l >= l && tr[u].r <= r) return tr[u].v;   //  树中节点已经被完全包含在[l, r]中了
    int mid = tr[u].l + tr[u].r >> 1;
    int v = 0;
    if (l <= mid) v = query(u * 2, l, r);
    if (r > mid) v = max(v, query(u * 2 + 1, l, r));
    return v;
}

如何进行修改

递归寻找,直到我们找到了我们将要修改的叶子节点(只有一个数的区间),进行修改。

void modify(int u, int x, int v) {
    if (tr[u].l == x && tr[u].r == x) tr[u].v = v;
    else {
        int mid = tr[u].l + tr[u].r >> 1;
        if (x <= mid) modify(u * 2, x, v);
        else modify(u * 2 + 1, x, v);
        pushup(u);	//	别忘了告诉父节点我们刚刚进行更新的信息
    }
}

例题1完整代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 200010;
int m, p;
struct Node {
    int l, r;
    int v;
} tr[N * 4];
void pushup(int u) {
    tr[u].v = max(tr[u * 2].v, tr[u * 2 + 1].v);
}
void build(int u, int l, int r) {
    tr[u] = {l, r};
    if (l == r) return ;
    int mid = l + r >> 1;
    build(u * 2, l, mid), build(u * 2 + 1, mid + 1, r);
}
int query(int u, int l, int r) {
    if (tr[u].l >= l && tr[u].r <= r) return tr[u].v;
    int mid = tr[u].l + tr[u].r >> 1;
    int v = 0;
    if (l <= mid) v = query(u * 2, l, r);
    if (r > mid) v = max(v, query(u * 2 + 1, l, r));
    return v;
}
void modify(int u, int x, int v) {
    if (tr[u].l == x && tr[u].r == x) tr[u].v = v;
    else {
        int mid = tr[u].l + tr[u].r >> 1;
        if (x <= mid) modify(u * 2, x, v);
        else modify(u * 2 + 1, x, v);
        pushup(u);
    }
}
int main() {
    int n = 0, last = 0;
    scanf("%d%d", &m, &p);
    build(1, 1, m);
    char op[2];
    int x;
    while ( m -- ) {
        scanf("%s%d", op, &x);
        if (*op == 'Q') {
            last = query(1, n - x + 1, n);
            printf("%d\n", last);
        } else {
            modify(1, n + 1, ((ll)last + x) % p);
            n ++ ;
        }
    }
    return 0;
}

进阶线段树(线段树的懒标记)

例题2:

给定一个长度为 N N N 的数列 A A A,以及 M M M 条指令,每条指令可能是以下两种之一:

  1. C l r d,表示把 A [ l ] , A [ l + 1 ] , … , A [ r ] A[l],A[l+1],…,A[r] A[l],A[l+1],,A[r] 都加上 d d d
  2. Q l r,表示询问数列中第 l ∼ r l \sim r lr 个数的和。

对于每个询问,输出一个整数表示答案。
数据范围

1 ≤ N , M ≤ 1 0 5 1 \le N,M \le 10^5 1N,M105
∣ d ∣ ≤ 10000 |d| \le 10000 d10000
∣ A [ i ] ∣ ≤ 1 0 9 |A[i]| \le 10^9 A[i]109

这道题我之前讲过分块的做法,具体可以查看我的另一篇博客:C++分块详解
我在这篇博客里吐槽了段错误树懒标记,那我们就学一学懒标记是什么
我们之前写的代码里有一个pushup函数,意思是由子节点的信息更新父节点的信息;我们还是拿上面的线段树举例:假设我要维护线段树每个区间的和,把区间的 [ 6 , 8 ] [6, 8] [6,8] 中的数字 6 6 6 变成 7 7 7 ,则这段区间的和由 6 + 7 + 8 = 21 6 + 7 + 8 = 21 6+7+8=21 变成了 7 + 7 + 8 = 22 7 + 7 + 8 = 22 7+7+8=22,同时它的所有父节点即 [ 6 , 10 ] [6, 10] [6,10] [ 1 , 10 ] [1, 10] [1,10] 的和全都需要更新。时间复杂度为 O ( n ) O(n) O(n);但是我们之前说过,线段树支持的所有操作都可以将时间复杂度控制在 O ( l o g   n ) O(log\ n) O(log n),那我们该怎么优化它呢?
没错,这就需要我们现在要学的懒标记操作,也称延迟标记。意思就是说,我们可以在线段树的结构体内加上一个标记add,在执行修改命令时,直接将add赋值为我们想要增加的数,表示“这个节点被我修改过,但我还未更新下面的子节点的信息”;后续查询时,我们只需要检查这个节点的父节点有没有背过“懒标记”的锅,如果有,就将这个节点和它父节点的另外一个子节点也标记上懒标记,再清除父节点的懒标记即可。

例题2完整代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100010;
int n, m;
int w[N];
struct Node {
    int l, r;
    ll sum, add;    //  sum是区间的和,add是区间的懒标记
} tr[N * 4];
void pushup(int u) {
    tr[u].sum = tr[u * 2].sum + tr[u * 2 + 1].sum;
}
void pushdown(int u) {  //  向下传递懒标记
    auto &root = tr[u], &left = tr[u * 2], &right = tr[u * 2 + 1];
    if (root.add) {
        left.add += root.add, left.sum += (ll)(left.r - left.l + 1) * root.add;
        right.add += root.add, right.sum += (ll)(right.r - right.l + 1) * root.add;
        root.add = 0;
    }
}
void build(int u, int l, int r) {
    if (l == r) tr[u] = {l, r, w[r], 0};
    else {
        tr[u] = {l, r};
        int mid = l + r >> 1;
        build(u * 2, l, mid), build(u * 2 + 1, mid + 1, r);
        pushup(u);
    }
}
void modify(int u, int l, int r, int d) {
    if (tr[u].l >= l && tr[u].r <= r) {
        tr[u].sum += (ll)(tr[u].r - tr[u].l + 1) * d;
        tr[u].add += d;
    } else {    //  别忘了分开
        pushdown(u);
        int mid = tr[u].l + tr[u].r >> 1;
        if (l <= mid) modify(u * 2, l, r, d);
        if (r > mid) modify(u * 2 + 1, l, r, d);
        pushup(u);
    }
}
ll query(int u, int l, int r) {
    if (tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
    pushdown(u);
    int mid = tr[u].l + tr[u].r >> 1;
    ll sum = 0;
    if (l <= mid) sum = query(u * 2, l, r);
    if (r > mid) sum += query(u * 2 + 1, l, r);
    return sum;
}
int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
    build(1, 1, n);
    char op[2];
    int l, r, d;
    while (m -- ) {
        scanf("%s%d%d", op, &l, &r);
        if (*op == 'C') {
            scanf("%d", &d);
            modify(1, l, r, d);
        } else {
            printf("%lld\n", query(1, l, r));
        }
    }
    return 0;
}

好啦,那我们的线段树到这里就讲完啦,可以给我一个赞吗uwu

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值