写完了这道题结果脑子断电把浏览器关了。。。。。。打开一看
没保存
寄
传送门:【深基1-2】小学数学 N 合一 - 洛谷
第一题 第二题 第三题
这几道题没啥好说的,直接输出就彳亍了
cout << "I love Luogu!" << endl;
cout << “6 4” << endl;
cout << "3 12 2" << endl;
第四题
这道题不难,但是题目说保留6位有效数字
“有效数字"包括整数部分。
所以这道题只保留3位小数,不是保留6位小数。
printf("%.3lf\n", 500.0 / 3.0);
第五题
这道题是一道典型的火车行程问题,本质就是一道相遇问题。
套用公式解答就ok力。
cout << 15 << endl;
第六题
这道题涉及到初二的一个知识:勾股定理:-)。
勾股定理的定义如下:
在一个直角三角形中,两直角边的平方和等于斜边的平方
那么我们就可以这样计算:
cout << sqrt(6 * 6 + 9 * 9) << endl;
第七题
也是简单的加减法,直接计算即可,注意需要使用换行符隔开。
cout << 110 << endl << 90 << endl << 0 << endl;
第八题
这道题的前两问没问题,那第三问球的体积怎么算呢?
球体积
接下来套公式就可以啦。
const double Pi = 3.141593;
cout << Pi * 10 << endl << Pi * 25 << endl << (4 / 3) * Pi * 125 << endl;
第九题
这道题也是小学奥数中的一类——还原问题
我们可以从最后一个桃子开始倒推,把多拿的一个桃子加回去,再把桃子数量乘以2,一步一步的向上一层一层。这就是我们常用的递归思想。
最后的答案是22。
cout << 22 << endl;
第十题
这道题就是小学奥数六年级最难的题——牛吃草问题,而且这道题还只是牛吃草问题中的菜鸟难度(相信我,不要作死深究这种问题,都是血与泪的教训)
我们先把原题转化成一般形式的板题:
牧场上有一片青草,每天都生长得一样快。这片青草供给8头牛吃,可以吃30天,若供给10头牛吃,可以吃6天。如果要10天把草吃完,需要多少头牛?
假设1头牛1天吃"1"份草;
8头牛在30天内,一共吃了(份)草
10头牛在6天内,一共吃了(份)草
因为吃草过程中会有多生长的草,所以第一种情况比第二种情况多吃了(份)草
这180份草是在(分钟)内生长的
那么1分钟生长(份)草,30分钟生长(份)草
那么原有的草就有(份),需要(头)牛吃掉。
总共需要(头)牛,也就是9台评测机。
cout << 9 << endl;
第十一题
按照追及问题的公式套用即可:
cout << 100 / (8 - 5) << endl;
第十二题
26个字母表应该没有人不会吧?
cout << 13 << endl << R << endl;
第十三题
我们知道正方体体积的立方根就是正方体的棱长。但是问题来了,<cmath>中没有求立方根的函数。但是我们可以将立方根转化为次方的方式,也就是这样:
记得别忘记强转。
upd:C++是有求立方根函数的:cbrt(a),但是a需要使用浮点数类型。
const double Pi = 3.141593;
cout << (int)(pow(4 / 3 * Pi * (4 * 4 * 4 + 10 * 10 * 10), 1.0 * 1 / 3)) << endl;
第十四题
内心OS:呼,总算要做完了。
蛤?一元二次方程?
出题人你是不是有点过分了?
无语.exe
好了,那我们先解一下方程⑧
解:
题目中要取较小的值,所以答案是50,直接输出答案即可。
cout << 50 << endl;