Pytorch(GPU版本)+ cuda10.2安装(解决torch.cuda.is_available()返回False的一种可能)

该文详述了如何在Anaconda环境下,使用Python 3.8和CUDA 10.2安装PyTorch的GPU版本。通过访问特定网址下载适用于Windows的whl文件,然后使用pip进行本地安装。安装完成后,通过`torch.cuda.is_available()`检查安装是否成功。若返回False,可能是下载了CPU版本的PyTorch。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch(GPU版本)+cuda10.2

版本及说明

使用Anaconda配置环境,python版本3.8.x

cuda版本10.2

本教程是作者在B站up跟李沐学AI的视频-03 安装【动手学深度学习v2】时,安装遇到的一些问题,记录下来,给遇到了相同困难的朋友提供一些解决办法,也方便以后我忘记了重新查看。希望对您有帮助!

步骤

0、Anaconda创建环境(创建了可跳过)

在anaconda命令行中输入

conda create -n d2l_zh_gpu python=3.8 pip

-n 后面接的是环境名,可以改成你自己喜欢的

python=3.8 pip 是环境包含内容,表示这个环境必须包括python 3.8 和 pip

之后激活进入环境

conda activate d2l_zh_gpu

看到前面的(base)变成环境名就正常

提一嘴,conda list 可以看到有哪些包,一般这些包都是在你的anaconda安装目录下的

…\anaconda3\envs\d2l_zh_gpu(你的环境名)\Lib\site-packages

1、访问网址找到对应需要版本的torch

https://download.pytorch.org/whl/torch_stable.html

在这里插入图片描述

cu102指cuda版本为10.2,对应pytorch版本为1.10.1,对应python版本为3.8,对应操作系统是Windows。

2、下载

我选择下载上图红色方框中的版本:

cu102/torch-1.10.1%2Bcu102-cp38-cp38-win_amd64.whl

下载时可以得它的下载地址(看下去,清华源慢,我用pip本地安装):

在这里插入图片描述

https://download.pytorch.org/whl/cu102/torch-1.10.0%2Bcu102-cp38-cp38-win_amd64.whl

复制网址,放到下面模板中(清华镜像可能有点慢):

pip install https://download.pytorch.org/whl/cu102/torch-1.10.0%2Bcu102-cp38-cp38-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

-i 前面的就是我们的下载地址,-i后面的是清华源镜像网站,这样就不用直接在外网上下了。

这里我用清华源很慢,所以直接使用浏览器下载后得到本地文件:
在这里插入图片描述

3、安装

(如果清华源下载很快,可以查看本文下方参考链接中的参考链接:pip 安装GPU版本pytorch 与cuda下载

我下载的很慢所以:

在anaconda中激活环境之后,用pip本地安装:

pip install C:\Users\Chen\Downloads\torch-1.10.0+cu102-cp38-cp38-win_amd64.whl

C:\Users\Chen\Downloads\torch-1.10.0+cu102-cp38-cp38-win_amd64.whl

是你自己下载文件所在路径
在这里插入图片描述

如图成功。

4、测试是否成功

输入python 回车

import torch

torch.cuda.is_available()

返回True则成功。如果False,往下看。

在这里插入图片描述

5、返回False的可能原因

没有安装教程走下来的话,使用pytorch官网,换源使用清华源,很可能下载的是cpu版本的torch

conda list

在这里插入图片描述

(这张图片引用至下参考链接第一条)

看到Pytorch的Build是pyxxx_cpu_0,就说明下的pytorch是cpu版本的。这样就会导致输出False。

6、参考链接

参考链接:安装pytorch报错torch.cuda.is_available()=false的解决方法

参考链接:pip 安装GPU版本pytorch 与cuda下载


这里提一嘴,在系统cmd中nvidia-sminvcc -V中的cuda版本显示不一样,这里简单来说,nvcc -V中的是你实际安装的cuda版本,nvidia-smi中的是驱动对应的cuda最高版本,只要这个版本大于等于你安装的cuda版本(nvcc -V中显示的)就可以。

在这里插入图片描述

在这里插入图片描述

<think>好的,用户的问题是关于PyTorch安装时更换国内源无效,需要正确配置国内源以成功安装。首先,我需要回忆相关的引用内容,看看用户提供的引用中有哪些有用的信息。 引用[5]提到,安装PyTorchGPU版本时,官网下载慢且容易失败,建议换清华源,并给出了添加通道的命令。这可能是一个关键点。用户可能已经按照这些步骤操作,但配置可能有问题,或者步骤没有正确执行。另外,引用[4]和[5]都提到了conda的配置问题,可能需要检查.condarc文件是否正确设置。 接下来,用户的问题可能是配置源后仍然无法安装可能的原因包括通道顺序不对、未清除缓存、或者使用了错误的安装命令。需要指导用户正确编辑.condarc文件,确保清华源或阿里源的优先级最高。此外,可能还需要清除conda的缓存,避免旧数据干扰。 另外,引用[1]提到使用pip安装二进制包,而引用[2]则给出验证安装是否成功的方法。如果conda安装失败,用户也可以尝试使用pip配合国内镜像源,比如清华的pip源。需要提醒用户,pip和conda的源是分开配置的,需要分别处理。 还可能存在CUDA版本PyTorch版本不兼容的问题,如引用[4]中提到的错误的版本搭配会导致无法调用GPU。用户可能需要检查自己的CUDA版本,并选择对应PyTorch安装命令。这时候,建议用户访问PyTorch官网获取正确的安装命令,或者使用conda search来查找可用的版本。 另外,用户可能没有正确添加所有必要的conda通道,例如pytorch专属通道,或者主通道和free通道,如引用[5]中的命令所示。需要确保所有相关通道都已添加,并且顺序正确,优先使用国内源。 最后,用户可能需要手动下载包并本地安装,或者检查网络连接是否正常,排除防火墙或代理的问题。如果所有方法都失败,建议用户参考引用[3]中的方法解决CondaHTTPError问题,可能涉及修改.condarc中的ssl验证或更换源地址。 总结步骤应该是:检查.condarc配置,清除缓存,使用正确的安装命令,尝试pip安装,验证CUDA兼容性,以及手动下载或检查网络设置。需要将这些步骤详细列出,并确保用户能逐步操作,同时引用相关的引用内容作为支持。</think>以下是如何正确配置国内源并解决PyTorch安装失败问题的分步指南: --- ### 一、检查国内源配置有效性 1. **验证`.condarc`文件内容** 通过命令行执行`conda config --show-sources`查看当前源配置。**必须包含清华源或阿里云地址**,且优先级高于默认源。 示例配置(清华源): ```yaml channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ - https://mirrors.tuna.tsinghua.tsinghua.edu.cn/anaconda/pkgs/main/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - defaults show_channel_urls: true ``` **注意**:`cloud/pytorch/`通道是PyTorch专属包来源[^5]。 2. **清除conda缓存** 执行以下命令避免旧缓存干扰: ```bash conda clean -i # 清除索引缓存 conda clean --all # 清理所有包缓存 ``` --- ### 二、正确的安装命令组合 1. **使用conda安装时指定通道优先级** 显式指定从国内源下载: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ -c defaults ``` 2. **尝试pip安装(备选方案)** 若conda仍失败,改用pip+清华镜像源: ```bash pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` **注意**:pip与conda源独立,需单独配置镜像[^1]。 --- ### 三、常见问题排查 1. **检查CUDA版本兼容性** 运行`nvidia-smi`查看CUDA驱动版本,**PyTorch版本需匹配CUDA版本**。例如: - CUDA 12.x:选择`pytorch-cuda=12.1` - CUDA 11.x:使用`pytorch-cuda=11.8` 历史版本命令参考PyTorch官网[^4]。 2. **手动下载包并本地安装** 若网络不稳定,从[清华镜像站](https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/)手动下载`.tar.bz2`包,执行: ```bash conda install /path/to/package.tar.bz2 ``` --- ### 四、验证安装结果 安装后执行以下Python代码检测是否成功: ```python import torch print(torch.__version__) # 应输出版本号 print(torch.cuda.is_available()) # 输出True表示GPU可用[^2] ``` --- ### 五、终极解决方法 若仍报错`CondaHTTPError`,修改`.condarc`的SSL验证设置: ```yaml ssl_verify: false # 仅限测试环境使用 channels: - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ # 改用http协议 ``` **注意**:生产环境慎用`ssl_verify: false`,建议检查代理或防火墙设置[^3]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值