工程力学(8)—材料力学的基本概念

一:材料力学的基本概念

理论力学研究刚体,研究力与运动的关系。材料力学研究变形体,研究力与变形的关系。

1:构件:工程结构或机械的每一组成部分。
2:变形:在外力作用下,固体内各点相对位置的改变。
(宏观上就是物体尺寸与形状的改变)
弹性变形:随外力解除而消失
塑性变形:外力解除后不会消失

物体抵抗变形的能力就叫刚度

3:内力: 内力由于发生变形而产生的相互作用力。(内力随外力的增大而增大)
强度:在载荷作用下,构件抵抗破坏的能力。

4:稳定性:在载荷作用下,构件保持原有平衡状态的能力。

刚度,强度,稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。

二:材料力学的任务:就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。

三:材料力学的研究对象:

包括:杆件,板壳,块体,主要研究杆件。
杆件分类一:直杆,曲杆。
杆件分类二:等截面杆(等值杆),变截面杆。

四:变形固体的基本假设

在外力作用下,一切固体都将发生变形,对变形固体作如下的假设。

1:连续性假设

认为整个物质体积内毫无空隙地充满物质。

2:均匀性假设

认为物体内的任何部分,其力学性能相同。

3:各向同性假设

认为在物体内各个方向的力学性能相同。(沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等)

4:小变形和线弹性假设

认为构件的变形极其微小,比构件本身的尺寸要小得多。
请添加图片描述
如图,δ远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的变形略去不计。计算得到很大的简化。

五:外力及其分类

按外力作用方式:体积力,表面力

体积力:连续分布物体内部各点的力。(重力或者惯力)

表面力:分布力,集中力。

连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水压力等均为分布力。
若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。

按外力与时间的关系:静载,动载

静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动不显著。
动载:载荷随时间变化。(交变载荷和突变载荷)

六:内力、截面法和应力的概念。

内力:外力作用引起构件内部的附加相互作用力。

截面法:请添加图片描述

例题1:请添加图片描述

按步骤得到下方的图,为了使该部分平衡,就得加上一个力和一个力偶。

例题2:

本题同上请添加图片描述

应力:为了表示内力在一点处的强度,引入内力集度的概念,即应力。

平均应力:外力除以面积请添加图片描述

正应力读作(西格玛),切应力读作(tāo)

七:变形和应变:

变形:物体内任意两点的相对位置发生变化。

线变形:线段长度的变化
角变形:线段间夹角的变化

应变:分为正应变和切应变

正应变(线应变)和切应变(角应变)
请添加图片描述
请添加图片描述
请添加图片描述

请添加图片描述

例题:

请添加图片描述

本科教材 PDF 等等 ·262· 工程力学 ·262· 由图14.8(a)中的曲线2查得,当b σ = 600MPa 时,K 1.66 σ = ,由表14-1查得0.88 σ ε = 。 由于轴表面经切削加工,由表 14-2,使用插入法,求得β = 0.925。 把以上求得的 max σ 、Kσ 、σ ε 、β 等代入公式(14.12),求出A-A 处的工作安全因数为 1 max 250 2.6 1.66 46.9 0.88 0.925 n σ K σ σ σ σ ε β = − = = × × 规定的安全因数为n = 2。所以,轴在该截面处满足强度条件式(14.11)。 14.5 持久极限曲线 在非对称循环的情况下,用r σ 表示持久极限。r σ 的脚标r 代表循环特征。例如脉动循 环r = 0,其持久极限记为 0 σ 。与测定对称循环持久极限1 σ - 的方法相似,在给定的循环特 征r 下进行疲劳试验,求得相应的S − N 曲线。图14.13即为这种曲线的示意图。利用S − N 曲线便可确定不同r 值的持久极限r σ 。 图 14.13 选取以平均应力m σ 为横轴,应力幅a σ 为纵轴的坐标系如图14.14所示。对任一个应力 循环,由它的m σ 和a σ 便可在坐标系中确定一个对应的P点。由公式(14.4)知,若把一点的 纵、横坐标相加,就是该点所代表的应力循环的最大应力,即 a m max σ +σ =σ (a) 由原点到P点作射线OP,其斜率为 a max min m max min 1 tan 1 r r σ σ σ α σ σ σ − − = = = + + (b) 可见循环特征r 相同的所有应力循环都在同一射线上。离原点越远,纵、横坐标之和 越大,应力循环的max σ 也越大。显然,只要max σ 不超过同一r 下的持久极限r σ ,就不会出 现疲劳失效。故在每一条由原点出发的射线上,都有一个由持久极限确定的临界点(如OP线 上的P′ )。对于对称循环,r = −1, m σ = 0, a max σ =σ ,表明与对称循环对应的点都在纵轴 上。由b σ 在横轴上确定静载的临界点B。脉动循环r = 0,由式(b)知tanα =1,故与脉动循 环对应的点都在α = 45的射线上,与其持久极限b σ 相应的临界点为C。总之,对任一循 环特征r ,都可确定与其持久极限相应的临界点。将这些点连成曲线即为持久极限曲线, 如图 14.14 中的曲线 AP′CB 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值