工程力学(13)—扭转二:等值圆轴横截面上的应力

本文详细介绍了圆轴在扭转时的几何变形关系,阐述了扭转变形的切应变与距离成正比的原理,并利用剪切胡克定律探讨了切应力的线性分布特点。此外,讨论了扭矩与截面极惯性矩的关系,以及如何计算实心和空心轴的抗扭截面系数。内容涵盖了静态和物理方面,是理解机械工程中扭转现象的重要基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重要公式
在这里插入图片描述

一:变形的几何关系

圆轴扭转的平面假设:
圆轴扭转变形前为平面的横截面,变形后仍保持为平面,形状大小不变,半径仍保持为直线,切相邻两直线间距离不变。

请添加图片描述
φ为扭转角,其所对的弧长等于Rφ。
由于视为很小的微量,这段弧近似看成直线,tanγ近似等于γ
所以φ所对的圆弧Rφ=γL

然后在这个轴上取一段dx,接着再取一块楔形的块底。请添加图片描述
放大后
请添加图片描述
外表面ABCD在扭转后发生了变形也即相对转动,变成了AB’CD’,
图中区别于周遭颜色的黄色区域为两个平面的相对转角dφ
图中的红色区域为切应变。

通过之前的推导可得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值