交叉滞后模型

文章介绍了交叉滞后模型用于分析变量间因果关系,特别是在研究暴力性电视节目爱好与攻击性,以及大学新生自我效能感与生活满意度的影响时。通过SPSSAMOS进行分析,结果显示自我效能感对生活满意度有显著影响,而生活满意度对自我效能感的影响不显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型理论:

概念:纵向追踪研究获得的多次数据进行分析以便确定哪个变量影响哪个变量,也就是确定变量之间因果关系的一种分析方法。交叉:既可研究A对B的影响,又可研究B对A的影响;滞后:研究不同时间点变量之间的关系;交叉滞后的结构图为:

交叉滞后模型中包含了三种结构关系:(1)自回归:即多个时点之间相同变量之间的因果关系;(2)相关/协方差:即同一个时点之间不同变量之间的相关关系;(3)交叉滞后回归:多个时点之间不同变量的因果关系。

交叉滞后模型的优势在于可判断谁因谁果,以及每个路径的强度。比如我们在研究暴力性电视节目的爱好和攻击性之间的因果关系时,采用交叉滞后模型得到如下示意图:

如上述,我们主要关注其交叉滞后关系的系数估计和显著性,即可推断出两个变量的因果关系,三年级对暴力性电视节目的爱好对十三年级的攻击性具显著影响力,则为青少年攻击性形成的果。

案例实现:

数据准备

欲了解大学新生一般自我效能感是否影响生活满意度,抽取大学新生样本:在开学第一个月对其同时施测‘一般自我效能感量表’和‘生活满意度问卷’,间隔两个月后,再次施测。即交叉滞后模型要求数据必须是面板数据,数据表如下:

使用SPSS AMOS进行分析

设定模型结构如下,导入数据至AMOS板块

 参数估计结果

 回归及检验结果

 结果解释:生活满意度对自我效能感的影响不显著且回归系数趋近于0;自我效能感对生活满意度的回归系数非常显著:说明自我效能感是生活满意度的原因。

参考文献:显变量交叉滞后分析|交叉滞后模型|追踪研究_哔哩哔哩_bilibili

<think>好的,用户需要了解如何在Mplus中构建三阶段交叉滞后模型,涉及学业压力、外界支持和学业焦虑这三个变量。首先,我需要回忆交叉滞后模型的基本结构,特别是三阶段的设置。三阶段意味着有三次测量时间点,每个时间点都测量这三个变量。交叉滞后的核心是变量在不同时间点之间的相互预测关系,比如时间1的学业压力预测时间2的学业焦虑,同时控制变量自身的滞后效应。 接下来,我需要考虑如何在Mplus中实现这个模型。Mplus的模型部分通常包括变量定义、模型设定、分析指令等。用户可能希望看到具体的代码结构,包括如何定义潜变量(如果有的话),但这里用户提到的是显变量,因为示例中直接用了X、Y、Z这样的观测变量。需要注意,如果变量是潜变量,则需要使用测量模型部分,但用户的问题中没有提到测量模型,可能假设变量是显变量。 然后,变量的命名需要明确,比如每个时间点的三个变量如何命名。例如,T1的学业压力、外界支持、学业焦虑可能命名为s1、sup1、a1,T2为s2、sup2、a2,T3为s3、sup3、a3。这样在模型中可以清晰地表示跨时间的路径。 模型部分需要包括自回归路径,即每个变量预测下一时间点的自身,如s1预测s2,s2预测s3。同时,交叉滞后路径,比如s1预测sup2和a2,sup1预测s2和a2,以此类推。还要考虑同步相关的设定,即在同一个时间点的残差之间可能存在相关,尤其是在T2和T3,但根据交叉滞后模型的一般做法,可能只需要在相同时间点的不同变量残差之间建立相关,例如T2的s2、sup2、a2的残差相关,T3同理。 此外,需要注意模型的拟合指令,比如估计方法,通常使用最大似然估计(ML),以及标准化的输出。还要考虑是否需要控制协变量或处理缺失数据,但用户的问题中没有提到这些,可能暂时不需要包括。 用户可能还需要了解如何解释模型结果,但当前问题主要是代码编写。需要确保语法正确,比如变量名称是否正确,路径符号是否正确(使用ON),模型是否闭合,没有遗漏必要的路径。 可能的误区包括:是否允许不同时间点的残差相关,比如T1的变量残差与T2的残差相关,但通常交叉滞后模型可能不会这样做,而是让同一时间点的不同变量残差相关。需要明确这一点。 另外,用户可能希望代码有注释,但Mplus中注释用感叹号,可以在代码中添加说明,帮助用户理解各部分的作用。 最后,检查示例代码是否符合Mplus的语法规范,比如语句结束用分号,变量名是否正确,模型部分是否正确使用ON来指定回归路径,以及是否正确定义了残差相关(如s2 WITH sup2 a2等)。 总结下来,构建代码的步骤是:定义变量,设定模型中的自回归和交叉滞后路径,定义同一时间点的残差相关,选择分析选项,并确保语法正确。然后提供一个示例代码,并解释各部分的作用,帮助用户理解如何修改和适应自己的数据。</think>以下是为三阶段交叉滞后模型(学业压力、外界支持、学业焦虑)编写的Mplus代码框架及分步说明: ```mplus TITLE: 三阶段交叉滞后模型(学业压力、外界支持、学业焦虑); DATA: FILE = 你的数据文件.dat; ! 请替换为实际数据文件路径 VARIABLE: NAMES = s1 sup1 a1 s2 sup2 a2 s3 sup3 a3; ! 假定变量命名规则: ! s=学业压力, sup=外界支持, a=学业焦虑, 数字表示时间点 USEVARIABLES = s1 sup1 a1 s2 sup2 a2 s3 sup3 a3; MODEL: !---------- 时间点2的预测 ---------- s2 ON s1 sup1 a1; ! T2学业压力受T1所有变量影响 sup2 ON s1 sup1 a1; ! T2外界支持受T1所有变量影响 a2 ON s1 sup1 a1; ! T2学业焦虑受T1所有变量影响 !---------- 时间点3的预测 ---------- s3 ON s2 sup2 a2; ! T3学业压力受T2所有变量影响 sup3 ON s2 sup2 a2; ! T3外界支持受T2所有变量影响 a3 ON s2 sup2 a2; ! T3学业焦虑受T2所有变量影响 !---------- 同步相关 ---------- s2 WITH sup2 a2; ! T2变量残差相关 sup2 WITH a2; s3 WITH sup3 a3; ! T3变量残差相关 sup3 WITH a3; OUTPUT: STANDARDIZED CINTERVAL; ``` **关键要素说明:** 1. **变量命名规则** - 使用「变量缩写+时间序号」结构(如s1=时间1学业压力) - 建议保持命名一致性:前测(1)、中测(2)、后测(3) 2. **模型构建逻辑** - **自回归路径**:每个变量预测下一时间点的自身(隐含在ON语句中) - **交叉滞后路径**:不同变量间的跨时间影响(如T1学业压力→T2学业焦虑) - **同步相关**:同一时间点变量残差间的相关(WITH语句) 3. **扩展建议** ```mplus ! 如需控制性别、年龄等协变量: s2 ON cov1 cov2; sup2 ON cov1 cov2; a2 ON cov1 cov2; ! 如需增加跨时间相关: s1 WITH sup1 a1; ! T1变量间相关 ``` **结果解读要点:** 1. 重点关注交叉滞后系数(如s1→a2表示早期压力对后期焦虑的影响) 2. 标准化系数(STDYX)便于比较效应大小 3. 置信区间(CINTERVAL)判断效应显著性 **注意事项:** 1. 数据需满足纵向数据结构要求 2. 样本量建议至少200以上 3. 缺失数据处理可通过添加语句: ```mplus MISSING = .; ESTIMATOR = MLR; ! 使用稳健最大似然估计 ``` 实际应用中需根据研究假设调整模型结构,建议通过MODEL TEST进一步验证特定路径的显著性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值