2023电赛E题简明设计思路、总结及参加电赛的建议

本文详细介绍了2023电赛E题中运动目标控制与自动追踪系统的硬件选型、设计思路和参赛建议。强调了团队协作、主控芯片选择(如STM32)、步进电机与磁编码器的应用以及模拟历年题目以提升技能的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023电赛E题简明设计思路、总结及参加电赛的建议

电赛题目:运动目标控制与自动追踪系统
在这里插入图片描述

1、硬件选型
主控 选择的是STC32G,该主控是提前为电赛准备的,此次题目并未限制主控芯片,因此继续使用该主控。
执行机构 选用42步进电机。此次题目对于精度要求极其高,步进电机相比于舵机等更符合要求。(同时也加入了磁编码器)同时题目对于扭矩要求不高,因此选用42步进电机最为合适。(最重要的是提前准备的步进电机就是这个)
步进电机驱动 a4988步进电机驱动模块。小巧,使用方便,且适配此前为电赛准备的主控板。
红绿激光笔 无要求,淘宝任意购买。
摄像头 K210。提前准备的是这个,听说openmv效果更好。
2、各题目设计思路
2.1第一问思路
设计要求:设置运动目标位置复位功能。执行此功能,红色光斑能从屏幕任意位置回到原点。光斑中心距原点误差≤2cm。
当开始此任务前,光点在屏幕中心;当开始此任务后,让电机失能,转动步进电机,同时用磁编码器记录转动脉冲。当按下复位按键,电机利用磁编码器记录数据返回原点。
2.2第二问思路
设计要求:启动运动目标控制系统。红色光斑能在 30 秒内沿屏幕四周边线顺时针移动一周,移动时光斑中心距边线距离≤2cm。
利用反正切函数,将屏幕坐标同步进电机脉冲数联系起来。如图2,位移与角度图。对于步进电机,脉冲数对应着固定角度,以此将步进电机的脉冲同位移联系上。(对于该方案,设计的结构最好让激光笔高度为30cm,即激光能打在屏幕正中央)
在这里插入图片描述
图2 位移与角度关系

float ANG_X,ANG_Y;
	if(Spd>100)	Spd=100;
	if(Spd<1)	Spd=1;
	ANG_X = atan(X/1000)*1528;  //换算成电机脉冲数
	ANG_Y = atan(Y/1000)*1528;  //换算成电机脉冲数
	motor_go((int)ANG_X,(int)ANG_Y,Spd);

此时,很多同学都已经明白了,可以直接写死这段代码。由于是铅笔画的框,摄像头根本拍不到,因此基本方法都是直接写死吧。
2.3第三问思路
设计要求:用约 1.8cm 宽的黑色电工胶带沿 A4 纸四边贴一个长方形,构成 A4 靶
纸。将此 A4 靶纸贴在屏幕自定的位置。启动运动目标控制系统,红色光斑能在
30 秒内沿胶带顺时针移动一周。超时不得分,光斑完全脱离胶带一次扣 2 分,
连续脱离胶带移动 5cm 以上记为 0 分。
这一问也可以直接写死,或者利用第四问方法。
2.4第四问思路
设计要求:将上述 A4 靶纸以任意旋转角度贴在屏幕任意位置。启动运动目标控制系统,要求同(3)。
执行该任务,需要提前让摄像头开始识别数据,采集到矩形四个角的坐标值。因题目要求需要顺时针转,因此对于采集到的数据采用排序算法,算出每一步需要走的坐标点。
2.5第五、六问思路
(5)设计要求:运动目标位置复位,一键启动自动追踪系统,控制绿色光斑能在 2 秒内追踪红色光斑,追踪成功发出连续声光提示。此时两个光斑中心距离应≤3cm。
(6)运动目标重复基本要求(3)~(4)的动作。绿色激光笔发射端可以放置在其放置线段的任意位置,同时启动运动目标及自动追踪系统,绿色光斑能自动追踪红色光斑。启动系统 2 秒后,应追踪成功,发出连续声光提示。此后,追踪过程中两个光斑中心距离大于 3cm 时,定义为追踪失败,一次扣 2 分。连续追踪失败 3 秒以上记为 0 分。运动目标控制系统和自动追踪系统均需设置暂停键。同时按下暂停键,红色和绿色光斑应立即制动,以便测量两个光斑中心距离。
这两问同属于从机追踪红点。对于主机,只用继续跑基础部分即可。对于从机,加入了滤光片,过滤掉绿光,这样在屏幕上,只能看见红光一种光源。注意在结构上,让摄像头和绿光源平行,如图3所示。(对于部分赛区,禁止使用滤光片)
在这里插入图片描述
图3 从机摄像头和激光笔位置
加一点:激光部分加个开关电路,使得可以控制激光开关。(利用三极管制作一个开关电路)
在这里插入图片描述
图4 开光电路
I/O置为1,电路导通,激光亮;
I/O置为0,电路不导通,激光灭;
3、总结
比赛完有很多思路,很多想写的,但是下笔写的时候,又感觉没啥可写。整体思路还是很简单的,写这篇文章时候也想多粘贴点代码,又感觉有些冗余,先就这样吧。希望能为后面准备比赛的同学有所帮助。
这个比赛其实我还蛮重视的,从上半年开始准备电赛,焊接,建模,单片机,最少都算是能及格水平了。赛前也练习过21年国赛送药小车等等。这次其实是准备冲击国奖。但是昨天测评完,效果很差,测评上和队友配合很陌生。俩队友软件硬件基本上不熟悉,整个比赛基本上我一个人负责软硬件,调试时候他们也不会说是主动来帮忙,叫来了就说自己也不会。比赛最后一小时匆匆把全部任务完成。诶~~~~只给了一次测评机会,出了差错,一半的分已经没了,国奖无望······
4、参加建议

  1. 选好队友,选好队友,选好队友!!!!!这比赛一个人c,难度有点大。队友的比赛态度>能力
  2. 赛前确定好主控,选择STM32或者其他等等。对于TI 的板子也一定要提前准备一下,有时候题目会限制TI 的主控。(TI是电赛的金主爸爸熬)
  3. 比赛前可以练练往年题目,特别是关于摄像头的,我猜测这个国赛近几年应该还需要用到。
  4. 能参加就尽量参加一下这个比赛吧。
. 使用jetson nano进行目标检测, 使用舵机进行控制, 使用串口进行通信 本项目为 矩形框识别 外围边线查找 部分.zip 1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值