kalman滤波python实现——基于维纳退化模型

参考文献:

Si X S, Wang W, Hu C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 219-237.

维纳过程模型: 

  • 退化模型:

X(t)=\lambda t+\sigma B(t)

其中,\lambda为drift coef,\sigma为diffusion coef ,B(\cdot)为标准布朗运动

  • 状态空间方程:

\begin{aligned}\lambda_i&=\lambda_{i-1}+\eta,\quad \eta\sim N(0,Q) \\x_i&=x_{i-1}+\lambda_{i-1}(t_i-t_{i-1})+\sigma\varepsilon_i, \quad \varepsilon_i\sim N(0,t_i-t_{i-1}) \end{aligned}

kalman滤波

  • 算法细节:

  • 代码实现 :
import matplotlib.pyplot as plt
from math import pi
import numpy as np
from numpy import log, exp, sqrt
from numpy.random import normal, randn

def kalman_filter_for_weiner_process(t, X):
    ''''X is an array'''
    n_samples = len(X)
    _size = n_samples + 5
    sigma2 = 10                           # difussion coef
    Q = 10                                # drift noise variation
    K = np.zeros(_size)
    P = np.ones([_size,_size])  # P0 = 1

    λ_hat = np.zeros(_size) # a0 = 1
    y_pred = np.zeros(_size)

    for i in np.arange(0, n_samples):
        if i == 0:
            y_pred[i] = X[i]
        else:    
           # Prediction (expectation)
            P[i][i-1] = P[i-1][i-1] + Q 
            K[i] = (t[i] - t[i-1])**2 * P[i][i-1] + sigma2 * (t[i] - t[i-1]) # kalman 增益
            λ_hat[i] = λ_hat[i-1] + P[i][i-1] * (t[i] - t[i-1]) * (X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])) / K[i]

            # Correction (variance)
            P[i][i] = P[i][i-1] - P[i][i-1] * (t[i] - t[i-1])**2 / K[i] * P[i][i-1]

            # 基于更新后的λ_hat进行下一步的预测
            y_pred[i] = y_pred[i-1] + λ_hat[i] * (t[i] - t[i-1])
            
        print(f"λ_hat:{λ_hat[i]},P:{P[i][i]}")

    plt.scatter(t,X, color = 'blue')
    plt.plot(t,X, color = 'blue', label = 'actual')
    plt.plot(t, y_pred[:len(t)], color = 'red', label='kalman')
    plt.scatter(t, y_pred[:len(t)], color = 'red')
    print(y_pred)
    print(λ_hat)
    print(X)
    plt.legend()
    

# data
t = np.arange(1,15)
X = np.sin(np.arange(1,15))  * 100
kalman_filter_for_weiner_process(t, X)
  •  输出结果:​​​​​​​​​​​​​​

改进的kalman滤波

  • 算法细节:

  •  代码实现:
import matplotlib.pyplot as plt
from math import pi
import numpy as np
from numpy import log, exp, sqrt
from numpy.random import normal, randn

def strong_tracking_kalman_filter_for_weiner_process(t, X):
    ''''X is an array'''
    n_samples = len(t)
    _size = n_samples + 5 
    print("n_samples:", n_samples)
    sigma2 = 10                           # difussion coef
    Q = 10                               # drift noise variation
    alpha, rho = 0.5, 0.5
    V = np.zeros(_size)
    gamma = np.zeros(_size)
    B = np.zeros(_size)
    C = np.zeros(_size)
    v = np.zeros(_size)
    

    K = np.zeros(_size)
    P = np.ones([_size,_size])  # P0 = 1

    λ_hat = np.zeros(_size) # a0 = 0
    y_pred = np.zeros(_size)

    for i in np.arange(0, n_samples):
        if i == 0:
            y_pred[i] = X[i]
        else:    
            gamma[i] = X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])
            if i == 1:
                V[i] = gamma[i]**2
            elif i > 1:
                V[i] = (rho * V[i-1] + gamma[i]**2) / (1 + rho)
            B[i] = V[i] - Q * (t[i] - t[i-1])**2 - alpha * sigma2 * (t[i] - t[i-1])
            C[i] = P[i-1][i-1] * (t[i] - t[i-1])**2 - alpha * sigma2 * (t[i] - t[i-1])
            v0 = B[i] / C[i]
            if v0 >= 1:
                v[i] = v0
            else:
                v[i] = 1

            # Prediction (expectation)
            P[i][i-1] = v[i] * P[i-1][i-1] + Q 
            K[i] = (t[i] - t[i-1])**2 * P[i][i-1] + sigma2 * (t[i] - t[i-1]) # kalman 增益
            λ_hat[i] = λ_hat[i-1] + P[i][i-1] * (t[i] - t[i-1]) / K[i] * (X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])) 

            # Correction (variance)
            P[i][i] = P[i][i-1] - P[i][i-1] * (t[i] - t[i-1])**2 / K[i] * P[i][i-1]

            # 基于调整过后的λ_hat进行下一步的预测
            y_pred[i] = y_pred[i-1] + λ_hat[i] * (t[i] - t[i-1])

        print(f"λ_hat:{λ_hat[i-1]},P:{P[i][i]}")

    plt.plot(t, X, color = 'blue', label = 'actual')
    plt.scatter(t, X, color = 'blue')
    plt.plot(t, y_pred[:len(t)], color = 'red', label='STF')
    plt.scatter(t, y_pred[:len(t)], color = 'red')
    print("y_pred:",y_pred)
    print("λ_hat:",λ_hat)
    print("X:",X)
    plt.legend()

# data
t = np.arange(1,15)
X = np.sin(np.arange(1,15))  * 100
strong_tracking_kalman_filter_for_weiner_process(t,X)
  •  输出结果:

在实验的过程中发现,滤波的效果受到参数Q的取值的影响很大。

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值