【数学分析02】不动点原理

数列的不动点原理(Fixed Point Theorem for Sequences)在数学分析中是一个重要的工具,用于研究数列收敛性的特性。具体来说,一个数列的“不动点”是指某个数列的一个值,当数列收敛时,其极限值就是这个不动点。

最常见的不动点原理是巴拿赫不动点定理(Banach Fixed Point Theorem),也称为收缩映射定理。其内容如下:

巴拿赫不动点定理:

( X , d ) (X, d) (X,d)是一个非空的完备度量空间,并且 T : X → X T: X \to X T:XX是一个收缩映射,即存在一个常数 0 ≤ c < 1 0 \leq c < 1 0c<1,使得对于所有 x , y ∈ X x, y \in X x,yX,都有

d ( T ( x ) , T ( y ) ) ≤ c ⋅ d ( x , y ) d(T(x), T(y)) \leq c \cdot d(x, y) d(T(x),T(y))cd(x,y)

T T T X X X中有唯一的不动点 x ∗ x^* x,即 T ( x ∗ ) = x ∗ T(x^*) = x^* T(x)=x。而且,对于任意 x 0 ∈ X x_0 \in X x0X,从 x 0 x_0 x0开始构造的序列 { x n } \{x_n\} {xn}满足

x n + 1 = T ( x n ) x_{n+1} = T(x_n) xn+1=T(xn)

{ x n } \{x_n\} {xn}收敛到 x ∗ x^* x

应用举例:

假设我们有一个函数 T ( x ) = 1 2 x + 1 2 T(x) = \frac{1}{2}x + \frac{1}{2} T(x)=21x+21并且我们在实数空间 R \mathbb{R} R上考虑这个函数。我们想找到这个函数的一个不动点。

首先,我们验证 T T T是一个收缩映射:

d ( T ( x ) , T ( y ) ) = ∣ 1 2 x + 1 2 − ( 1 2 y + 1 2 ) ∣ = ∣ 1 2 ( x − y ) ∣ = 1 2 ∣ x − y ∣ d(T(x), T(y)) = \left|\frac{1}{2}x + \frac{1}{2} - \left(\frac{1}{2}y + \frac{1}{2}\right)\right| = \left|\frac{1}{2}(x - y)\right| = \frac{1}{2}|x - y| d(T(x),T(y))= 21x+21(21y+21) = 21(xy) =21xy

这里,收缩常数 c = 1 2 < 1 c = \frac{1}{2} < 1 c=21<1,因此 T T T是一个收缩映射。

根据巴拿赫不动点定理, T T T有唯一的不动点 x ∗ x^* x,满足 T ( x ∗ ) = x ∗ T(x^*) = x^* T(x)=x

我们求解:

x ∗ = 1 2 x ∗ + 1 2 x^* = \frac{1}{2}x^* + \frac{1}{2} x=21x+21

移项得到:

x ∗ − 1 2 x ∗ = 1 2 x^* - \frac{1}{2}x^* = \frac{1}{2} x21x=21

1 2 x ∗ = 1 2 \frac{1}{2}x^* = \frac{1}{2} 21x=21

x ∗ = 1 x^* = 1 x=1

因此,不动点是 x ∗ = 1 x^* = 1 x=1

我们可以构造一个数列来验证这个不动点:

设初始值 x 0 = 0 x_0 = 0 x0=0,则数列 { x n } \{x_n\} {xn}满足:

x n + 1 = T ( x n ) = 1 2 x n + 1 2 x_{n+1} = T(x_n) = \frac{1}{2}x_n + \frac{1}{2} xn+1=T(xn)=21xn+21

x 1 = T ( x 0 ) = 1 2 ( 0 ) + 1 2 = 1 2 x_1 = T(x_0) = \frac{1}{2}(0) + \frac{1}{2} = \frac{1}{2} x1=T(x0)=21(0)+21=21

x 2 = T ( x 1 ) = 1 2 ( 1 2 ) + 1 2 = 1 4 + 1 2 = 3 4 x_2 = T(x_1) = \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} x2=T(x1)=21(21)+21=41+21=43

x 3 = T ( x 2 ) = 1 2 ( 3 4 ) + 1 2 = 3 8 + 1 2 = 7 8 x_3 = T(x_2) = \frac{1}{2}\left(\frac{3}{4}\right) + \frac{1}{2} = \frac{3}{8} + \frac{1}{2} = \frac{7}{8} x3=T(x2)=21(43)+21=83+21=87

可以看到,数列 { x n } \{x_n\} {xn}逐渐逼近 1,即数列 { x n } \{x_n\} {xn}收敛到不动点 x ∗ = 1 x^* = 1 x=1

  • 24
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值