该文档是中国科学院自动化研究所研究员、中科闻歌董事长王磊于 2025 年 2 月发表的《人工智能技术发展与应用探索》,主要内容如下:
人工智能技术发展
-
回顾人工智能发展历程,ChatGPT 揭开通用人工智能序幕,历经学科开拓、效果突破等阶段,大模型具全领域通识等优势,但也存在非基础科学突破等不足,其学习方法分泛学、矫正、拟人阶段,依赖大数据、大算力及人机协同,还介绍了大模型应用迭代路径、误区、行业落地步骤及关键挑战,并提出数智化路径思考。
-
分析大模型应用的两大误区,一是将其仅作为聊天、写作类常规文案应用,与核心业务脱节且仅进行简单部署和微调;二是把大模型神秘化,期望其直接解决所有重大应用问题,忽视其局限性且认为一个模型能满足所有需求。同时阐述了 AI + 行业落地的三步曲,包括数据工程、模型工程和领域工程,强调各环节在将大模型应用于行业领域中的关键作用,并指出应用过程中面临静态模型与动态数据不匹配的挑战,以及信息庞杂、深度认知分析难和本源规律趋势预测难等问题,进而提出先升级、再泛化、后革新的数智化路径。
DeepSeek 认知与影响
-
介绍 DeepSeek 模型发展,其在基础模型上训练,有多种架构特点,通用能力强,开源且在多平台上架 API,具有复制 OpenAI o1 技术思路、压缩训练成本、定位为开源平替等特征,并详细解读重点论文,涵盖训练步骤、奖励策略、性能对比等,还提及社区验证情况。
-
深入分析 DeepSeek 模型训练过程中的关键技术细节,如基于规则的奖励机制(GRPO)如何引导模型学习推理过程,在训练 DeepSeek - R1 - Zero 时,通过特定的指令模板让模型生成推理过程和答案,并依据规则对其进行奖励,避免内容偏见;在强化学习(RL)阶段,为缓解语言混用问题引入语言一致性奖励,计算链式推理中目标语言准确性奖励并相加,以提升模型推理能力。同时对比不同训练方案对模型性能的影响,如对于小模型,通过实验证明 SFT 蒸馏效果优于直接 RL 训练,且介绍了 DeepSeek - R1 训练的四步走过程,包括冷启动数据训练 SFT、RL 方案增强推理、拒绝采样与 SFT 结合以及 RL 方案提升全场景能力,各步骤相互配合以提升模型整体性能。
AI + 金融实践案例
-
列举金融行业应用案例,如大型金融机构财报解读问答、证券公司智能合规比稿、上市公司财税大模型、银行信贷审核智能体、金融犯罪智能分析系统、银行 AI 信贷尽调报告、基金证券投研智能体、港府机构经济分析报告智能写作系统、创投基金智能资管平台等,展示 AI 在金融各环节的作用与成效。
-
以大型金融机构财报解读问答为例,基于资产负债表等三大报表构造指令数据微调模型,使其具备跨多文档推理、精准数值获取等多种能力,能准确回答工银分支机构数量、员工人数变化等问题;证券公司智能合规比稿中,模型助力合规审校人员对比报告与底稿,自动生成结果辅助审核;上市公司财税大模型为财税产业提供功能支撑并赋能自助办税终端系统;银行信贷审核智能体解决信贷业务难题,提高审核精度和效率;金融犯罪智能分析系统帮助银行识别和防范金融犯罪风险;银行 AI 信贷尽调报告降低人工成本;基金证券投研智能体提升投研效率和质量;港府经济分析报告智能写作系统辅助专家撰写报告;创投基金智能资管平台实现投资管理自动化、智能化,推动投资机构转型。
中科闻歌介绍
聚焦企业级 DATA + AI,拥有雅意、优雅等模型及系列数据和决策应用产品,雅意大模型在多语言、多模态等方面能力突出,优雅多模态大模型赋能视频创作全链路,“智川” X - Agent 平台可零代码构建 AI 应用,降低开发门槛,重塑系统价值。