该报告由世界经济论坛与麦肯锡公司合作发布。报告聚焦于全球物流行业的脱碳需求,探讨人工智能在其中的关键作用,通过提升运营效率、改善运力利用率和优化运输模式转换三个关键途径,助力全球物流减少 10 - 15% 的碳排放。
全球物流脱碳的紧迫性:全球交通行业温室气体排放占比达 16 - 25%,其中货运物流占全球排放的 7 - 8%。目前全球航运和供应商中,75% 缺乏明确脱碳目标或对实现目标存疑,且预计到 2050 年交通行业存在 55 亿吨的碳排放差距,因此急需创新解决方案推动脱碳进程。
AI 助力物流脱碳的关键途径
提升运营效率:AI 可通过优化停留时间、路线规划、改善司机驾驶行为和资产维护等方面,减少全球货运物流行业 4 - 7% 的碳排放。如美国卡车运输业因装卸停留时间低效,2023 年产生了高额成本,而 AI 技术可通过实时数据和预测分析,减少停留时间、优化路线,从而降低燃油消耗和排放。
改善运力利用率:AI 能够解决空驶运力问题,降低全球货运物流排放 2 - 4%。在美国,卡车运输业每年因空驶运力损失超 1500 亿美元。AI 可通过预测需求、优化装载和规划路线,减少空驶里程,提高运输效率,例如欧洲某货运代理公司应用 AI 后显著降低了空驶运力。
优化运输模式转换:将货运转向低碳运输模式,可减少全球货运排放 3 - 4%。目前部分货物采用高排放运输模式,AI 可帮助克服基础设施限制、地理因素、运输灵活性和货物特殊性等障碍,推动运输模式转换。如 DHL 与客户合作,利用 AI 优化运输模式,降低了成本和碳排放。
拥抱 AI 机遇的关键行动
行为改变:虽然 AI 应用无需消费者和企业立即改变行为即可带来成果,但要充分发挥其潜力,仍需终端用户转变思维和行为。目前绿色物流市场处于早期阶段,但预计 2025 - 2030 年将快速增长,消费者和企业对绿色解决方案的接受度逐渐提高。
生态系统合作:垂直和水平方向的跨行业合作对利用 AI 实现货运物流脱碳至关重要。垂直合作如托运人和承运人共同寻求多式联运解决方案;水平合作如卡车运输公司之间的合作。合作过程中需解决数据共享、竞争和标准统一等问题。
领导与基层行动结合:运输行业数字化成熟度较低,企业领导需明确愿景,鼓励基层探索 AI 应用。企业可采用 “接受者”“塑造者”“创造者” 三种 AI 应用方式,同时要考虑 AI 应用成本和碳排放问题,采取负责任的实施策略。
结论与展望:货运物流行业借助 AI 有潜力减少 10 - 15% 的排放,同时提高效率和服务水平。行业应从简单应用入手,推动 AI 融入,建立统一数据规范,跟踪脱碳进展。早期采用 AI 的企业有望获得竞争优势,引领全球向低碳未来发展。
点击文后阅读原文,可获得下载资料的方法。
本公号使用腾讯元器(使用DeepSeek R1大模型)创建了智能交通技术AI服务,欢迎扫码进入体验(或在后台使用私信对话)。
点击文后阅读原文,可获得下载资料的方法。