手写数字识别代码复现,开发语言 : python TensorFlow 开发工具 PyCharm使用卷积神经网络进行训练 毕业设计 附完整代码

本文介绍了使用Python 3.6.13、TensorFlow 2.5.0 + Keras 2.5.0在PyCharm中复现手写数字识别的过程。通过从简单的隐藏层到卷积神经网络(CNN),再到包含最大池化和Dropout层的复杂CNN,逐步提升模型性能。在Kaggle的Digit Recognizer数据集上,finalDemo的测试集准确率达到了99.55%。
摘要由CSDN通过智能技术生成

“手写数字识别代”代码复现,开发语言 : python 3.6.13\使用框架 :TensorFlow 2.5.0 + Keras 2.5.0\开发工具 :PyCharm 2020.2.2 x64,使用卷积神经网络进行训练,采用 network.evaluate()评估函数输出 测试集损失和测试集准确率,训练集损失以及训练集准确率。详细设计见md文件。

开发环境


开发语言 : python 3.6.13

使用框架 :TensorFlow 2.5.0 + Keras 2.5.0

开发工具 :PyCharm 2020.2.2 x64

二、项目目录说明


此次复现的主要代码文件有:

    PyCharm是一个强大的Python集成开发环境,用于构建基于卷积神经网络(Convolutional Neural Network, CNN)的手写字母识别项目,你可以按照以下步骤来编写并运行代码: 1. **安装必要的库**: - 首先,你需要安装TensorFlow或PyTorch等深度学习框架,以及像Keras这样的高级API,因为它们提供了预定义的CNN模型和便利的功能。 ``` pip install tensorflow keras ``` 2. **数据预处理**: 导入MNIST数据集,这是常用于手写数字识别的标准数据集,包含了训练和测试样本。 ```python from tensorflow.keras.datasets import mnist (train_data, train_labels), (test_data, test_labels) = mnist.load_data() ``` 3. **图像预处理**: 对像素值归一化,并将图像转换为适合输入CNN的维度。 ```python train_data, test_data = train_data / 255.0, test_data / 255.0 train_data = train_data.reshape(-1, 28, 28, 1) test_data = test_data.reshape(-1, 28, 28, 1) ``` 4. **构建CNN模型**: 使用Keras创建一个简单的CNN模型,包括卷积层、池化层和全连接层。 ```python model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') # 输出层,10代表0-9十个数字 ]) ``` 5. **编译模型**: 设置损失函数、优化器和评估指标。 ```python model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) ``` 6. **训练模型**: 将训练数据拟合到模型上。 ```python model.fit(train_data, train_labels, epochs=10, validation_split=0.1) ``` 7. **评估模型**: 测试模型在测试集上的性能。 ```python test_loss, test_acc = model.evaluate(test_data, test_labels, verbose=2) print(f'Test accuracy: {test_acc}') ``` 8. **预测**: 最后,你可以用模型对新的手写字母图片进行分类。 ```python predictions = model.predict(new_image.reshape(1, 28, 28, 1)) predicted_label = np.argmax(predictions) print(f"Predicted label: {predicted_label}") ``` 记得在实际操作中替换`new_image`为你想要识别的实际手写字体图片。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    计算机毕设论文

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值