信号与系统(18)-连续时间系统的复频域分析:拉普拉斯反变换1
拉普拉斯的正变换相对容易,但是反变换中,其积分表现为一个在 s s s平面的二维复函数积分,其积分相对复杂,如果使用单纯的公式计算求解会有很多麻烦。这样的积分的求法通常有两种常用方法:分部分式展开法以及留数法。这一部分内容将对分部分式展开法进行介绍。
1. 分部分式展开法
分部分式展开法,是根据拉普拉斯变换的线性特性,将复杂的拉普拉斯变换展开为多个简单的拉普拉斯变换的组合,并通过对这些简单拉普拉斯变换求解他们的反变换,依据拉普拉斯变换的齐次性和叠加性,进而得到原拉普拉斯变换的拉普拉斯反变换。
设 F ( s ) F(s) F(s)为某信号的拉普拉斯变换,如果F(s)可以展开为一个有理函数形式,即:
F ( s ) = N ( s ) D ( s ) = b m s m + b m − 1 s m − 1 + b m − 2 s m − 2 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s m − 1 + a n − 2 s m − 2 + ⋯ + a 1 s + a 0 F(s)=\frac{N(s)}{D(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+b_{m-2}s^{m-2}+\cdots +b_1s+b_0}{a_ns^n+a_{n-1}s^{m-1}+a_{n-2}s^{m-2}+\cdots +a_{1}s+a_0} F(s)=D(s)N(s)=ansn+an−1sm−1+an−2sm−2+⋯+a1s+a0bmsm+bm−1sm−1+bm−2sm−2+⋯+b1s+b0
则 F ( s ) F(s) F(s)可以进行分部分式展开,表示为多个简单的有理分式之和。
在进行分部分式展开式,根据 m m m和 n n n的关系,以及 D ( s ) = 0 D(s)=0 D(s)=0有无重根的情况,需要对展开方式及其相应的反变换的方法进行分类讨论。
1.1 当 m < n m<n m<n,且 D ( s ) = 0 D(s)=0 D(s)=0没有重根
1.1.1 没有重根,且根均为实数时
设 D ( s ) = 0 D(s)=0 D(s)=0的根为 s 1 s_1 s1, s 2 s_2 s2,……, s n s_n sn,则可以将 F ( s ) F(s) F(s)表示为:
F ( s ) = K 1 s − s 1 + K 2 s − s 2 + ⋯ + K n s − s n = ∑ i = 1 n K i s − s i \begin{aligned} F(s)&=\frac{K_1}{s-s_1}+\frac{K_2}{s-s_2}+\cdots+\frac{K_n}{s-s_n} \\&=\sum_{i=1}^{n}\frac{K_i}{s-s_i} \end{aligned} F(s)=s−s1K1+s−s2K2+⋯+s−snKn=i=1∑ns−siKi
其中系数 K i K_i Ki的求法有很多,常见以下三种:
-
系数平衡法:即将 ∑ i = 1 n K i s − s i \sum_{i=1}^{n}\frac{K_i}{s-s_i} ∑i=1ns−siKi进行通分,得到带有系数 K i K_i Ki的分子,通过对比等式左边的 F ( s ) F(s) F(s)分子的系数,得到有关 K i K_i Ki的方程组,从而计算得到系数的值。
如求解: F ( s ) = 1 s 2 + 3 s + 2 F(s)=\frac{1}{s^2+3s+2} F(s)=s2+3s+21
其待定系数的分部分式为: K 1 s + 1 + K 2 s + 2 \frac{K_1}{s+1}+\frac{K_2}{s+2} s+1K1+s+2K2
通分后得: K 1 ( s + 1 ) + K 2 ( s + 2 ) ( s + 1 ) ( s + 2 ) \frac{K_1(s+1)+K_2(s+2)}{(s+1)(s+2)} (s+1)(s+2)K1(s+1)+K2(s+2)
对比 F ( s ) = 1 s 2 + 3 s + 2 F(s)=\frac{1}{s^2+3s+2} F(s)=s2+3s+21,可得方程组: K 1 + K 2 = 0 , K 1 + 2 K 2 = 1 K_1+K_2=0, K_1+2K_2=1 K1+K2=0,K1+2K2=1
进而求得: K 1 = 1 , K 2 = − 1 K_1=1, K_2=-1 K1=1,K2=−1
-
利用 K i = ( s − s i ) ⋅ F ( s ) K_i=(s-s_i)\cdot F(s) Ki=(s−si)⋅F(s)求得
如求解: F ( s ) = 1 s 2 + 3 s + 2 F(s)=\frac{1}{s^2+3s+2} F(s)=s2+3s+21
其待定系数的分部分式为: K 1 s + 1 + K 2 s + 2 \frac{K_1}{s+1}+\frac{K_2}{s+2} s+1K1+s+2K2,且 s 1 = − 1 , s 2 = − 2 s_1 = -1, s_2=-2 s1=−1,s2=−2
进而求得:
K 1 = F ( s ) ⋅ ( s − s 1 ) ∣ s = s 1 = [ 1 s 2 + 3 s + 2 ] ⋅ ( s + 1 ) ∣ s = − 1 = 1 K_1 =F(s)\cdot (s-s_1)|_{s=s_1}= [\frac{1}{s^2+3s+2}]\cdot (s+1)|_{s=-1} = 1 K1=F(s)⋅(s−s1)∣s=s1=[s2+3s+21]⋅(s+1)∣s=−1=1,
K 2 = F ( s ) ⋅ ( s − s 2 ) ∣ s = s 2 = [ 1 s 2 + 3 s + 2 ] ⋅ ( s + 2 ) ∣ s = − 2 = − 1 K_2 =F(s)\cdot (s-s_2)|_{s=s_2} =[\frac{1}{s^2+3s+2}]\cdot (s+2)|_{s=-2} = -1 K2=F(s)⋅(s−s2)∣s=s2=[s2+3s+21]⋅(s+2)∣s=−2=−1
-
利用 K i = N ( s ) D ′ ( s ) ∣ s = s i K_i = \frac{N(s)}{D'(s)}|_{s=s_i} Ki=D′(s)N(s)∣s=si
如求解: F ( s ) = 1 s 2 + 3 s + 2 F(s)=\frac{1}{s^2+3s+2} F(s)=s2+3s+21
其待定系数的分部分式为: K 1 s + 1 + K 2 s + 2 \frac{K_1}{s+1}+\frac{K_2}{s+2} s+1K1+s+2K2,且 s 1 = − 1 , s 2 = − 2 s_1 = -1, s_2=-2 s1=−1,s2=−2
进而求得:
K 1 = 1 ( s 2 + 3 s + 2 ) ′ ∣ s = s 1 = 1 2 s + 3 ∣ s = − 1 = 1 K_1 = \frac{1}{(s^2+3s+2)'}|_{s=s_1}=\frac{1}{2s+3}|_{s=-1}=1 K1=(s2+3s+2)′1∣s=s1=2s+31∣s=−1=1
K 2 = 1 ( s 2 + 3 s + 2 ) ′ ∣ s = s 2 = 1 2 s + 3 ∣ s = − 2 = − 1 K_2 = \frac{1}{(s^2+3s+2)'}|_{s=s_2}=\frac{1}{2s+3}|_{s=-2}=-1 K2=(s2+3s+2)′1∣s=s2=2s+31∣s=−2=−1
根据幂函数的拉式变换:
L { e α t ε ( t ) } = 1 s − α ⟺ L − 1 { 1 s − α } = e α t ε ( t ) L\{e^{\alpha t}\varepsilon(t)\}=\frac{1}{s-\alpha} \Longleftrightarrow L^{-1}\{\frac{1}{s-\alpha}\}=e^{\alpha t}\varepsilon(t) L{
eαtε(t)}=s−α1⟺L−1{
s−α1}=eαtε(t)
因此:
L − 1 { F ( s ) } = L − 1 { ∑ i = 1 n K i s − s i } = L − 1 ∑ i = 1 n { K i s − s i } = ∑ i = 1 n K i e s i t ε ( t ) \begin{aligned} L^{-1}\{F(s)\}&=L^{-1}\{\sum_{i=1}^{n}\frac{K_i}{s-s_i}\} \\&=L^{-1}\sum_{i=1}^{n}\{\frac{K_i}{s-s_i}\} \\&=\sum_{i=1}^{n}K_ie^{s_it}\varepsilon(t) \end{aligned} L−1{
F(s)}=L−1{
i=1∑ns−siKi}=L−1i=1∑n{