C语言经典算法之自组织映射算法(伪代码)

目录

前言

A.建议

B.简介

一 代码实现

网络结构定义

计算最佳匹配单元(BMU)

更新权重

训练过程

二 时空复杂度

A.时间复杂度:

B.空间复杂度:

C.总结

三 优缺点

A.优点:

B.缺点:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

自组织映射(Self-Organizing Map, SOM)是一种无监督学习的人工神经网络算法,用于数据降维和可视化。

一 代码实现

在C语言中实现SOM算法涉及以下关键步骤:

网络结构定义

首先需要定义一个二维的网格结构,即所谓的映射层或竞争层。每个单元(neuron)包含一个权重向量,与输入数据具有相同的维度。

// 定义权重结构体
typedef struct {
    double weights[DIMENSION]; // DIMENSION代表输入数据的维度
} Neuron;

// 定义SOM网络结构体
typedef struct {
    Neuron *map; // 存储所有神经元权重的数组
    int width; // 映射宽度
    int height; // 映射高度
} SOM;

// 初始化函数
void init_som(SOM *som, int map_width, int map_height, int input_dim) {
    som->width = map_width;
    som->height = map_height;
    som->map = (Neuron*)malloc(sizeof(Neuron) * map_width * map_height);
    for (int i = 0; i < map_width * map_height; ++i) {
        for (int j = 0; j < input_dim; ++j) {
            som->map[i].weights[j] = (double)rand() / RAND_MAX; // 初始随机权重
        }
    }
}

计算最佳匹配单元(BMU)

对于给定的输入样本,需要计算其距离映射上每个神经元权重的距离,并找出最小距离对应的神经元作为最佳匹配单元(Best Matching Unit, BMU)。

// 计算欧氏距离函数
double euclidean_distance(double *input, Neuron *neuron) {
    double sum = 0;
    for (int i = 0; i < DIMENSION; ++i) {
        sum += pow(input[i] - neuron->weights[i], 2);
    }
    return sqrt(sum);
}

// 找到BMU
Neuron* find_bmu(SOM *som, double *input) {
    double min_dist = INFINITY;
    Neuron *bmu = NULL;
    int index = 0;

    for (int y = 0; y < som->height; ++y) {
        for (int x = 0; x < som->width; ++x) {
            int neuron_index = y * som->width + x;
            double dist = euclidean_distance(input, &som->map[neuron_index]);
            if (dist < min_dist) {
                min_dist = dist;
                bmu = &som->map[neuron_index];
                index = neuron_index;
            }
        }
    }

    return bmu;
}

更新权重

基于BMU及其邻域内的神经元更新它们的权重,朝着输入样本的方向靠近,但随着距离BMU距离增加而逐渐减弱这种影响,通常使用高斯函数来定义邻域大小。

// 更新权重函数
void update_weights(SOM *som, double *input, Neuron *bmu, float learning_rate, float neighborhood_radius) {
    float sigma = neighborhood_radius;
    float alpha = learning_rate;

    for (int y = 0; y < som->height; ++y) {
        for (int x = 0; x < som->width; ++x) {
            int neuron_index = y * som->width + x;
            Neuron *neuron = &som->map[neuron_index];

            // 计算当前神经元与BMU之间的距离
            double dist = euclidean_distance(bmu->weights, neuron->weights);

            // 根据距离计算高斯影响因子
            float influence = exp(-dist * dist / (2 * sigma * sigma));

            // 更新权重
            for (int i = 0; i < DIMENSION; ++i) {
                neuron->weights[i] += alpha * influence * (input[i] - neuron->weights[i]);
            }
        }
    }

    // 随着训练迭代次数增加,逐渐减小学习率和邻域半径
    alpha *= DECAY_FACTOR;
    sigma *= DECAY_FACTOR;
}

训练过程

SOM的训练是一个迭代过程,在每一迭代步,将整个训练集的数据依次送入网络进行上述操作,直至达到预设的迭代次数或者网络收敛。

// SOM训练函数
void train_som(SOM *som, double **inputs, int num_inputs, int num_iterations, float initial_learning_rate, float initial_neighborhood_radius) {
    float learning_rate = initial_learning_rate;
    float neighborhood_radius = initial_neighborhood_radius;

    for (int iter = 0; iter < num_iterations; ++iter) {
        for (int sample = 0; sample < num_inputs; ++sample) {
            Neuron *bmu = find_bmu(som, inputs[sample]);
            update_weights(som, inputs[sample], bmu, learning_rate, neighborhood_radius);
        }
    }
}

以上是SOM算法在C语言中的核心部分的伪代码实现,实际编写时还需要考虑更多细节,如参数初始化、训练过程的控制、输出结果的可视化等。

二 时空复杂度

自组织映射(Self-Organizing Map, SOM)算法的时空复杂度主要包括训练过程中的时间复杂度和空间复杂度。

A.时间复杂度

SOM算法的时间复杂度主要取决于以下几个因素:

  1. 迭代次数:训练过程中通常需要进行多轮迭代,直到网络达到某种收敛状态。每一轮迭代中,对于每个输入样本,都需要计算它与所有神经元之间的距离以找到最佳匹配单元(Best Matching Unit, BMU)。这一步的时间复杂度为 O(nmd),其中 n 是输入样本的数量,m 是映射网格的总节点数(通常是二维的宽度乘以高度),d 是输入数据的维度。

  2. 权重更新:在确定BMU后,还需要对邻近神经元的权重进行更新,其影响范围一般随学习率或邻域半径变化而变化。如果邻域大小随着迭代逐渐减小,则平均来说,每次更新的神经元数量也会减少,但总的更新次数仍与迭代次数成正比。

综上所述,总体时间复杂度是迭代次数与单次迭代复杂度的乘积,即O(iterations * (n * m * d))。实际应用中,由于SOM不是一次遍历完所有数据就结束的算法,而是反复迭代直至收敛,因此其总体时间复杂度较高。

B.空间复杂度

SOM的空间复杂度主要体现在:

  1. 权重存储:需要存储整个映射网格的所有神经元的权重向量,其空间复杂度为 O(m * d),其中 m 为映射网格的总节点数,d 为权重向量(即输入数据的维度)。

  2. 临时变量:在寻找最佳匹配单元、计算高斯函数等过程中可能需要一些额外的临时变量,但这些相比于权重存储的空间需求要小得多。

  3. 输入数据存储:若同时处理大量输入数据,还需考虑输入样本集的空间复杂度,即 O(n * d)。

因此,SOM的主要空间开销在于存储神经元权重矩阵,故空间复杂度大致为 O(m * d)。

C.总结

在实际应用中,为了提高SOM算法的效率,常会采用各种优化手段,如使用高效的索引结构加速距离计算,以及针对邻域函数优化权重更新操作等。此外,对于大规模数据集,可能会采用分布式计算框架来并行化训练过程,从而降低时间复杂度。

三 优缺点

A.优点:

  1. 非线性降维与保持拓扑结构:SOM通过训练将高维输入空间中的数据点映射到低维的二维或一维网格上,同时保持了输入数据的拓扑关系,即在原始高维空间中距离相近的数据点在映射后的低维空间中仍相对靠近。

  2. 可视化:由于输出是二维或一维的,因此能够直观地展示高维数据的分布特征,这对于数据分析和理解具有重要意义。

  3. 无监督学习:不需要预先知道数据的类别标签,适合对未知数据集进行探索性分析和发现潜在的结构。

  4. 聚类能力:SOM可以自动划分数据,形成聚类,并且能够识别出数据分布的边界和模式。

  5. 数据压缩:通过对权重矩阵的有效编码,可以在一定程度上实现数据的压缩存储。

  6. 泛化性能:对于新样本,SOM能够快速找到其在映射上的对应位置,从而实现对新数据的分类和处理。

B.缺点:

  1. 结果依赖于初始化和参数设置:SOM算法的结果受初始权重分配以及学习率、邻域函数等参数选择的影响较大,不同的参数组合可能会导致不同的映射结果。

  2. 收敛速度和稳定性:SOM的训练过程需要迭代多次才能达到稳定状态,尤其是在面对复杂高维数据时,可能需要较长时间才能收敛,并且容易陷入局部最优解。

  3. 不适合大规模数据集:随着数据集规模的增大,计算最佳匹配单元(BMU)所需的时间成本会显著增加,而且传统的SOM在并行化处理上存在一定的挑战。

  4. 无法保证完全保形映射:虽然SOM试图保留数据的拓扑结构,但在某些情况下,尤其是对于复杂的非线性流形,不能保证映射后完全保持原有的几何形状。

  5. 维度灾难问题:尽管SOM有助于可视化和降低维度,但它本身并不能彻底解决“维度灾难”问题,对于极高维数据,仍然可能存在一些限制。

四 现实中的应用

  1. 数据可视化:SOM的一个重要用途是将高维数据投影到低维空间(如2D或3D),从而便于人类视觉理解。例如,在金融领域中,可以用于分析股票市场的走势模式;在生物信息学中,可用来展示基因表达数据的聚类结构。

  2. 市场细分与客户分类:在市场营销领域,SOM可用于对消费者行为、购买历史等数据进行聚类分析,帮助企业了解客户群体特征并制定个性化营销策略,如电信行业根据用户的通话记录、消费行为等数据划分客户群。

  3. 图像处理与计算机视觉:在图像分析中,SOM可以用于特征提取和图像分割,如通过学习颜色分布、纹理特征来识别图像中的物体类别或相似性。

  4. 信号处理与模式识别:在语音识别、机器听觉等领域,SOM能用于音频信号的特征映射和模式识别,比如将复杂的声波信号转化为易于理解和分类的低维表示。

  5. 故障诊断与预测维护:工业监控系统中,SOM可以用来对设备运行参数进行实时监测和故障预警,通过学习正常状态下的模式,快速识别异常状况。

  6. 医学研究:在医疗数据分析中,SOM可用于疾病分型、药物反应预测及基因功能注释等任务,通过聚类分析基因表达数据揭示潜在的疾病亚型或治疗靶点。

  7. 地理信息系统:GIS领域的应用包括空间数据分析、环境变量分布模式的探索以及地理区域的自然分类。

  8. 无线传感网络:在WSN中,SOM可用于优化节点布局,发现网络性能瓶颈,并进行服务质量(QoS)测量等。

  9. 物联网(IoT)数据分析:针对海量传感器数据,SOM可以实现高效的数据降维和聚类,以帮助管理者从大量复杂数据中提取有用信息,进行状态监测和决策支持。

  • 21
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值