第二章 数列极限与数值级数

数列极限与数值级数

无穷求和——级数

级数的由来

级数和的定义

  • 无穷级数

    • ∑ n = 1 ∞ a n = a 1 + a 2 + ⋅ ⋅ ⋅ + a n + ⋅ ⋅ ⋅ \sum_{n=1}^\infty a_n=a_1+a_2+···+a_n+··· n=1an=a1+a2++an+
  • 部分和数列 S n {S_n} Sn

    • S n = a 1 + a 2 + ⋅ ⋅ ⋅ + a n S_n=a_1+a_2+···+a_n Sn=a1+a2++an
  • 收敛

    • 对于级数 ∑ n = 1 ∞ a n , 若 其 部 分 和 数 列 S n 收 敛 , 且 极 限 为 s , 该 级 数 收 敛 , s 称 为 该 级 数 的 和 , 记 为 ∑ n = 1 ∞ a n = s . \sum_{n=1}^\infty a_n,若其部分和数列{S_n}收敛,且极限为s,该级数收敛,s称为该级数的和,记为\sum_{n=1}^\infty a_n=s. n=1anSns,sn=1an=s.
  • 发散

    • 若其部分和数列 S n {S_n} Sn发散,该级数发散
  • 几何级数

    • 形式

      • ∑ n = 1 ∞ q n − 1 = 1 + q + ⋅ ⋅ ⋅ + q n − 1 + ⋅ ⋅ ⋅ \sum_{n=1}^\infty q^{n-1}=1+q+···+q^{n-1}+··· n=1qn1=1+q++qn1+
    • 收敛

      • ∣ q ∣ < 1 时 |q|<1时 q<1
    • 发散

      • ∣ q ∣ ≥ 1 |q|\ge 1 q1

收敛级数的 性质

  • 级数收敛的必要条件

    • 设级数 ∑ n = 1 ∞ a n 收 敛 , 则 有 lim ⁡ n → ∞ a n = 0 \sum_{n=1}^\infty a_n收敛,则有\lim_{n\rightarrow\infty}a_n=0 n=1anlimnan=0
  • 定理2

    • 设级数 ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n 收 敛 , 则 级 数 ∑ n = 1 ∞ ( a n ± b n ) 也 收 敛 , 且 ∑ n = 1 ∞ ( a n ± b n ) = ∑ n = 1 ∞ a n ± ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty b_n收敛,则级数\sum_{n=1}^\infty (a_n\pm b_n)也收敛,且\sum_{n=1}^\infty (a_n\pm b_n)=\sum_{n=1}^\infty a_n\pm\sum_{n=1}^\infty b_n n=1ann=1bnn=1(an±bn)n=1(an±bn)=n=1an±n=1bn
  • 定理3

    • λ \lambda λ为非零常数,则级数 ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ λ a n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty \lambda a_n n=1ann=1λan有相同的收敛性
  • 定理4

    • 增加级数或减少级数 ∑ n = 1 ∞ a n 中 的 有 限 项 不 改 变 原 级 数 的 收 敛 性 , 即 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n中的有限项不改变原级数的收敛性,即\sum_{n=1}^\infty a_n n=1ann=1an的收敛性与前有限项无关。
  • 定理5

    • 设级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛,则在不改变级数项前后位置的条件下,任意结合级数的有限项得到新级数,则新级数也收敛,且和不变。

同号级数列收敛的判别方法

正号级数收敛的充要条件

  • ∑ n = 1 ∞ a n 为 正 项 级 数 , 则 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n为正项级数,则\sum_{n=1}^\infty a_n n=1ann=1an收敛的充要条件是其部分和数列{S_n}有界,不存在依赖n的正整数使得 S n = a 1 + a 2 + ⋅ ⋅ ⋅ + a n ≤ M ( n = 1 , 2 ⋅ ⋅ ⋅ ) . S_n=a_1+a_2+···+a_n\le M(n=1,2···). Sn=a1+a2++anM(n=1,2).

比较判别法

  • 不等式形式

    • ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty b_n n=1ann=1bn均为正项级数,且 a n ≤ b n ( n = 1 , 2 , ⋅ ⋅ ⋅ ) a_n\leq b_n(n=1,2,···) anbn(n=1,2,),则有

      • (1)当级数 ∑ n = 1 ∞ b n 收 敛 时 , 级 数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty b_n收敛时,级数\sum_{n=1}^\infty a_n n=1bnn=1an也收敛;
      • (2)当级数 ∑ n = 1 ∞ a n 发 散 时 , 级 数 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n发散时,级数\sum_{n=1}^\infty b_n n=1ann=1bn也发散;
  • P级数

    • 定义

      • ∑ n = 1 ∞ 1 n p = 1 1 p + 1 2 p + ⋅ ⋅ ⋅ + 1 n p + ⋅ ⋅ ⋅ \sum_{n=1}^{\infty}\frac{1}{n^p}=\frac{1}{1^p}+\frac{1}{2^p}+···+\frac{1}{n^p}+··· n=1np1=1p1+2p1++np1+
    • 收敛性

      • 0 ≤ p ≤ 1 0\le p\le 1 0p1时,P级数发散,当 p > 1 p>1 p>1时,P级数收敛
  • 极限形式

    • ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty b_n n=1ann=1bn均为正项级数,且 lim ⁡ n → ∞ b n a n = l , \lim_{n\rightarrow\infty}\frac{b_n}{a_n}=l, limnanbn=l,

      • (1)当 0 < l < ∞ 0<l<\infty 0<l<时,级数 ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty b_n n=1ann=1bn有相同的收敛性。
      • (3)当 l = + ∞ l=+\infty l=+时,级数 ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty b_n n=1ann=1bn有相同的收敛性。
      • (2) 当 l = 0 当l=0 l=0时,级数 ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n和\sum_{n=1}^\infty b_n n=1ann=1bn有相同的收敛性。

比值判别法与根值判别法

  • 比值判别法

    • ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an为正项级数,且 lim ⁡ n → ∞ a n + 1 a n = q ( 0 ≤ q ≤ + ∞ ) , \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=q(0\le q\le +\infty), limnanan+1=q(0q+)则有

      • (1)当 0 ≤ q < 1 0\le q<1 0q<1时,级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛;
      • (2)当 q > 1 q>1 q>1 q = + ∞ q=+\infty q=+,级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an发散;
  • 根值判别法

    • ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an为正项级数,且 l i m n → ∞ n a n = q , 0 ≤ q ≤ + ∞ , lim_{n\rightarrow\infty}\sqrt[n]{}a_n=q,0\le q\le +\infty, limnn an=q,0q+,则有

      • (1)当 0 ≤ q < 1 0\le q<1 0q<1时,级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛;
      • (2)当 q > 1 q>1 q>1 q = + ∞ q=+\infty q=+,级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an发散;

变号级数收敛性判别方法

交错级数

  • 定义

    • a n > 0 ( n = 1 , 2 ⋅ ⋅ ⋅ ) a_n>0(n=1,2···) an>0(n=1,2),称级数 ∑ n = 1 ∞ ( − 1 ) n − 1 a n = a 1 − a 2 + ⋅ ⋅ ⋅ + ( − 1 ) n − 1 a n + ⋅ ⋅ ⋅ \sum_{n=1}^\infty(-1)^{n-1}a_n=a_1-a_2+···+(-1)^{n-1}a_n+··· n=1(1)n1an=a1a2++(1)n1an+为交错级数
  • 莱布尼茨判别法

    • 对于交错级数,若满足,则级数收敛,且 ∑ n = 1 ∞ ( − 1 ) n − 1 a n ≤ a 1 \sum_{n=1}^\infty(-1)^{n-1}a_n\leq a_1 n=1(1)n1ana1

      • (1) a n {a_n} an单调减少,即 a 1 ≥ a 2 ≥ ⋅ ⋅ ⋅ ≥ a n ≥ ⋅ ⋅ ⋅ ; a_1\geq a_2\geq ··· \geq a_n\geq ···; a1a2an
      • (2) lim ⁡ x → ∞ a n = 0 \lim_{x\rightarrow\infty}a_n=0 limxan=0

变号级数

  • 若级数 ∑ n = 1 ∞ ∣ a n ∣ 收 敛 , 则 级 数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty|a_n|收敛,则级数\sum_{n=1}^\infty a_n n=1ann=1an一定收敛,且 ∣ ∑ n = 1 ∞ a n ∣ ≤ ∑ n = 1 ∞ ∣ a n ∣ . |\sum_{n=1}^\infty a_n|\le\sum_{n=1}^\infty |a_n|. n=1ann=1an.

  • 若级数 ∑ n = 1 ∞ ∣ a n ∣ 收 敛 , 则 称 级 数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty|a_n|收敛,则称级数\sum_{n=1}^\infty a_n n=1ann=1an为绝对收敛,若级数 ∑ n = 1 ∞ a n 收 敛 , 而 级 数 ∑ n = 1 ∞ ∣ a n ∣ \sum_{n=1}^\infty a_n收敛,而级数\sum_{n=1}^\infty|a_n| n=1ann=1an发散,则称 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an为条件收敛。

  • 绝对级数收敛的两个性质

    • 交换律

      • ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an为绝对收敛的级数,则任意交换级数项的前后位置,得到的新级数 ∑ n = 1 ∞ a n ‘ \sum_{n=1}^\infty a^`_n n=1an仍然绝对收敛,且有 ∑ n = 1 ∞ a n = ∑ n = 1 ∞ a n ‘ \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty a_n^` n=1an=n=1an.
    • 级数的乘积

      • ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n与\sum_{n=1}^\infty b_n n=1ann=1bn为绝对收敛的级数,则它们的乘积 ∑ n = 1 ∞ a i b j \sum_{n=1}^\infty a_ib_j n=1aibj认为绝对收敛,且 ∑ i , j = 1 ∞ a i b j = ∑ n = 1 ∞ a n ⋅ ∑ n = 1 ∞ b n \sum_{i,j=1}^\infty a_ib_j= \sum_{n=1}^\infty a_n·\sum_{n=1}^\infty b_n i,j=1aibj=n=1ann=1bn= ∑ n = 1 ∞ ( a n b 1 + a n − 1 b 2 + ⋅ ⋅ ⋅ + a 1 b n ) \sum_{n=1}^\infty (a_nb_1+a_{n-1}b_2+···+a_1b_n) n=1(anb1+an1b2++a1bn)(柯西乘积)
    • ∑ n = 0 ∞ ( n + 1 ) q n = 1 ( 1 − q ) 2 或 ∑ n = 1 ∞ n q n = 1 ( 1 − q ) 2 . \sum_{n=0}^\infty (n+1)q^n=\frac{1}{(1-q)^2}或\sum_{n=1}^\infty nq^n=\frac{1}{(1-q)^2}. n=0(n+1)qn=(1q)21n=1nqn=(1q)21.

  • 条件级数

    • 通过对其交换项的前后位置(不改变符号),将其收敛到任何预先给定的数。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

思想麻辣汤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值