无穷级数(一)常数项级数的概念与性质

无穷级数是高等数学的一个重要组成部分,解决了无限个数相加的问题,是表示函数、研究函数性质、计算函数值以及求解微分方程的一种工具。本章讨论常数项级数与函数项级数。

一、常数项级数的概念

设有数列 u 1 , u 2 , u 3 , . . . , u n , . . . u_1, u_2, u_3, ... , u_n,... u1,u2,u3,...,un,...,将它们依次相加,得到表达式 u 1 + u 2 + u 3 + . . . + u n + . . . u_1+u_2+u_3+...+u_n+... u1+u2+u3+...+un+...,称此式为(常数项)无穷级数,简称(常数项)级数,记为 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un
∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + . . + u n + . . . \sum_{n=1}^{∞}u_n=u_1+u_2+u_3+..+u_n+... n=1un=u1+u2+u3+..+un+...
其中,第n项称为级数的一般项或通项.
为了对上述级数求和给出合理定义,我们构筑了部分和数列 { s n } {\left \{ s_n\right \}} {sn}:
s n = u 1 + . . . + u n s_n=u_1+...+u_n sn=u1+...+un
根据该数列有无极限,我们引入无穷级数收敛与发散的概念.

定义一

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un的部分和数列 { s n } \left\{s_n\right\} {sn}有极限 s s s,即 l i m n → ∞ s n = s lim_{n→∞}s_n=s limnsn=s,则称级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un收敛,并称 s s s为这个级数的和。记为
s = ∑ n = 1 ∞ u n s=\sum_{n=1}^{∞}u_n s=n=1un s = u 1 + . . . + u n + . . . s=u_1+...+u_n+... s=u1+...+un+...
如果 { s n } \left\{s_n\right\} {sn}没有极限,则称级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un发散.

二、收敛级数的基本性质

性质一

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un收敛于和 s s s,则级数 ∑ n = 1 ∞ k u n \sum_{n=1}^{∞}ku_n n=1kun也收敛,且其和为 k s ks ks,其中 k k k为常数.

性质二

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un和级数 ∑ n = 1 ∞ v n \sum_{n=1}^{∞}v_n n=1vn分别收敛于和 s s s σ σ σ,则级数 ∑ n = 1 ∞ ( u n ± v n ) \sum_{n=1}^{∞}(u_n±v_n) n=1(un±vn)同时也收敛,且其和为 s ± σ s±σ s±σ.

推论一

如果 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un收敛且 ∑ n = 1 ∞ v n \sum_{n=1}^{∞}v_n n=1vn发散,则 ∑ n = 1 ∞ ( u n + v n ) \sum_{n=1}^{∞}(u_n+v_n) n=1(un+vn)必发散.

推论二

综合性质一二来看,有:
如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un和级数 ∑ n = 1 ∞ v n \sum_{n=1}^{∞}v_n n=1vn分别收敛于和 s s s σ σ σ,则级数 ∑ n = 1 ∞ ( k u n ± l v n ) \sum_{n=1}^{∞}(ku_n±lv_n) n=1(kun±lvn)同时也收敛,且其和为 k s ± l σ ks±lσ ks±lσ.

性质三

在级数中删去、添加或改变有限项,不会改变级数的收敛性,但可能使收敛级数的和发生改变.

性质四

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un收敛,则对这级数的项任意加括号后所产生的新级数(每个括号里各项之和作为新级数的项)仍收敛,且其和不变.

性质四可以理解为收敛的级数满足加法结合律
已知一个数列的某个子数列收敛不能保证数列自身收敛,但单调数列与其子数列敛散性相同. 于是有如下结论:

  • 如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un各项符号相同(其部分和数列 { s n } \left\{s_n\right\} {sn}单调),那么加括号所产生的新级数与原级数敛散性相同
  • 如果加括号所产生的新级数发散,那么原级数也发散;如果加括号所产生的新级数收敛,则不能断定原级数也收敛. 例如:
    ∑ n = 1 ∞ ( − 1 ) n − 1 = 1 − 1 + 1 − . . . + ( − 1 ) n − 1 \sum_{n=1}^{∞}(-1)^{n-1}=1-1+1-...+(-1)^{n-1} n=1(1)n1=11+1...+(1)n1发散,但加括号后的级数
    ( − 1 + 1 ) + ( − 1 + 1 ) + . . . (-1+1)+(-1+1)+... (1+1)+(1+1)+...
    收敛于0,另一种加括号的级数
    1 + ( 1 − 1 ) + ( 1 − 1 ) + . . . 1+(1-1)+(1-1)+... 1+(11)+(11)+...
    收敛于1,这就说明发散级数不满足加法结合律.

性质五(级数收敛的必要条件)

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un收敛,则其一般项 u n u_n un趋于0,即 l i m n → ∞ u n = 0 lim_{n→∞}u_n=0 limnun=0

推论二

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un的通项 u n u_n un不趋于0,则如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{∞}u_n n=1un发散.

wrriten by arycra_07, 2.28.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AryCra_07

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值