自适应神经网络模糊控制系统代码

clc;
clear;
close all;

% 载入数据
test0 = xlsread('test0.xlsx'); % 载入测试数据
train0 = xlsread('train0.xlsx'); % 载入训练数据

% 分离输入和输出
input_train = train0(:,1:4); % 训练输入
output_train = train0(:,5); % 训练输出
input_test = test0(:,1:4); % 测试输入
output_test = test0(:,5); % 测试输出

% 定义 FIS 的初始参数
numMFs = 3; % 每个输入的成员函数数量,可以调整
mfType = 'gbellmf'; % 成员函数类型,可以选择 'gbellmf', 'trimf', 'gaussmf' 等

% 生成初始 FIS
in_fis = genfis1([input_train output_train], numMFs, mfType);

% 训练 ANFIS 模型
epoch_n = 100; % 训练轮数,可以调整
anfis_model = anfis([input_train output_train], in_fis, epoch_n);

% 使用 ANFIS 模型进行预测
predicted_output = evalfis(input_test, anfis_model);

% 计算均方误差
mse = mean((output_test - predicted_output).^2);

% 输出均方误差
disp(['均方误差(MSE):', num2str(mse)]);

### 自适应模糊神经网络概述 自适应模糊神经网络(ANFIS,Adaptive Neuro-Fuzzy Inference System)是一种结合了模糊逻辑和人工神经网络优点的计算模型[^1]。其核心思想在于利用模糊逻辑来描述不确定性和复杂性,并通过神经网络的学习能力自动调整参数以提高性能[^2]。 #### ANFIS 的基本结构 ANFIS 是一种前馈型神经网络,通常基于 T-S 型模糊推理系统构建。它的典型架构包括五个主要层: 1. **输入层**:负责接收外部输入信号并对其进行预处理。 2. **模糊化层**:将输入变量映射到隶属函数上,从而实现模糊化的操作[^3]。 3. **规则层**:根据预先定义好的模糊规则集生成相应的激活权重。 4. **去模糊化层**:综合各条规则的结果并通过加权平均等方式得出最终输出值。 5. **输出层**:提供经过处理后的清晰数值作为整个系统的响应。 这些层次共同作用使得 ANFIS 能够模拟复杂的非线性关系,并具备良好的泛化能力和鲁棒特性。 #### 学习机制 为了使 ANFIS 更好地拟合目标函数或者完成特定的任务需求,必须设计合理有效的学习策略对其内部参数进行不断修正和完善。一般而言,可以采用梯度下降法或者其他更先进的优化技术来进行训练过程中的参数更新工作。 #### 应用场景分析 由于 ANFIS 结合了模糊逻辑的强大表达力以及神经网络强大的自学功能,在许多领域都得到了广泛应用: - 工业自动化控制: 如机器人路径规划、电机速度调节等领域; - 时间序列预测: 对股票市场走势、天气变化趋势等做出较为精确预报 ; - 图像识别分类: 辨识手写字符图片类别归属情况等等 。 以下是使用 MATLAB 实现简单 ANFIS 模型的一个例子: ```matlab % 加载样本数据 load simpledata.mat; % 创建初始 FIS (Fuzzy Inference System) fis = genfis(inputData,outputData); % 训练 anfis 模型 opt.trainEpochs = 40; % 设置最大迭代次数为40次 anfisModel = anfistrain(fis,inputData,outputData,opt); % 测试已训练好的模型效果如何 predictedOutput = evalfis(anfisModel,testInput); plot(testInput,predictedOutput,'r',testInput,actualTestOutput,'b'); legend('Predictions','Actual Values') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值