斐波那契数列通项公式的数学推导

斐波那契数列是由兔子的繁殖引入的,它的数列是1,1,2,3……

法则为:a_{n+1}=a_n+a_{n-1}

除了这个规则外,还有a_n=a_n也是必然成立的

将上面两个等式写为矩阵形式,也即

{\begin{pmatrix} a_{n+1}\\a_n \end{pmatrix}}= \begin{pmatrix} 1&1 \\ 1&0 \end{pmatrix}\begin{pmatrix} a_n\\a_{n-1} \end{pmatrix}

那么根据上述规则,可以得到

{\begin{pmatrix} a_{n+1}\\a_n \end{pmatrix}}= {\begin{pmatrix} 1&1 \\ 1&0 \end{pmatrix}}^2\begin{pmatrix} a_{n-1}\\a_{n-2} \end{pmatrix}

逐次迭代,有:

{\begin{pmatrix} a_{n+1}\\a_n \end{pmatrix}}= {\begin{pmatrix} 1&1 \\ 1&0 \end{pmatrix}}^{n-1}\begin{pmatrix} a_{2}\\a_{1} \end{pmatrix}

现在只需要计算矩阵A=\begin{pmatrix} 1 &1 \\ 1& 0 \end{pmatrix}这个矩阵的n次方,即可得到通项公式

要计算n次方,可以计算出特征根,然后对角化,这样可以极大地简化运算

{\begin{pmatrix} 1 & 1\\ 1& 0 \end{pmatrix}}=P\begin{pmatrix} \lambda _1 & 0\\ 0 & \lambda_2 \end{pmatrix}P^{-1}

计算|\lambda E-A|=0这个方程的解

\lambda^2-\lambda-1=0

这个方程的两个解为:\lambda_1=\frac{\sqrt{5}+1}{2},\lambda_2=\frac{-\sqrt{5}+1}{2}

然后将这两个矩阵代回原方程,计算出方程的解,两个解作为列向量合并就是P矩阵

(\lambda_1E-A)\varepsilon_1=0

(\lambda_2E-A)\varepsilon_2=0

解得:\varepsilon_1=\begin{pmatrix} 1\\ \frac{-1+\sqrt{5}}{2} \end{pmatrix},\varepsilon_2=\begin{pmatrix} 1\\ \frac{-1-\sqrt{5}}{2} \end{pmatrix}

于是P矩阵为\begin{pmatrix} 1& 1\\ \frac{\sqrt{5}-1}{2}&\frac{-1-\sqrt{5}}{2} \end{pmatrix}

P的逆矩阵计算可以用多种方法得到,最终结果为:

P^{-1}=\begin{pmatrix} -\frac{\sqrt{5}+1}{2} &-1 \\ \frac{1-\sqrt{5}}{2}&1 \end{pmatrix}{(-\frac{1}{\sqrt{5}})}

于是

A=\begin{pmatrix} 1 &1 \\ 1& 0 \end{pmatrix}={\begin{pmatrix} 1& 1\\ \frac{\sqrt{5}-1}{2}&\frac{-1-\sqrt{5}}{2} \end{pmatrix}}{\begin{pmatrix} \frac{\sqrt{5}+1}{2} & 0\\ 0 &\frac{-\sqrt{5}+1}{2} \end{pmatrix}}{\begin{pmatrix} -\frac{\sqrt{5}+1}{2} &-1 \\ \frac{1-\sqrt{5}}{2}&1 \end{pmatrix}{(-\frac{1}{\sqrt{5}})}}

对A取n-1次方就变成了:

A^{n-1}=\begin{pmatrix} 1 &1 \\ 1& 0 \end{pmatrix}={\begin{pmatrix} 1& 1\\ \frac{\sqrt{5}-1}{2}&\frac{-1-\sqrt{5}}{2} \end{pmatrix}}{\begin{pmatrix} (\frac{\sqrt{5}+1}{2})^{n-1} & 0\\ 0 &(\frac{-\sqrt{5}+1}{2})^{n-1} \end{pmatrix}}{\begin{pmatrix} -\frac{\sqrt{5}+1}{2} &-1 \\ \frac{1-\sqrt{5}}{2}&1 \end{pmatrix}{(-\frac{1}{\sqrt{5}})}}

经过繁琐的化简之后:

A^{n-1}={\begin{pmatrix} 1 &1 \\ 1& 0 \end{pmatrix}}^{n-1}={\begin{pmatrix} {-(\frac{\sqrt{5}+1}{2})^n+(\frac{-\sqrt{5}+1}{2})^n} &{-(\frac{\sqrt{5}+1}{2})^{n-1}+(\frac{-\sqrt{5}+1}{2})^{n-1}} \\ {-(\frac{\sqrt{5}+1}{2})^{n-1}+(\frac{-\sqrt{5}+1}{2})^{n-1}} & {-(\frac{\sqrt{5}+1}{2})^{n-2}+(\frac{-\sqrt{5}+1}{2})^{n-2}} \end{pmatrix}}*(\frac{-1}{\sqrt{5}})

代回:

{\begin{pmatrix} a_{n+1}\\a_n \end{pmatrix}}= {\begin{pmatrix} 1&1 \\ 1&0 \end{pmatrix}}^{n-1}\begin{pmatrix} a_{2}\\a_{1} \end{pmatrix}= {\begin{pmatrix} 1&1 \\ 1&0 \end{pmatrix}}^{n-1}\begin{pmatrix} 1\\1 \end{pmatrix}

得到:

a_{n+1}=({ {-(\frac{\sqrt{5}+1}{2})^n+(\frac{-\sqrt{5}+1}{2})^n}{-(\frac{\sqrt{5}+1}{2})^{n-1}+(\frac{-\sqrt{5}+1}{2})^{n-1}}})(-\frac{1}{\sqrt{5}})

进一步提出公因式后化简

a_{n+1}=({​{(-1-\frac{\sqrt{5}+1}{2})(\frac{\sqrt{5}+1}{2})^{n-1}+{(1+\frac{1-\sqrt{5}}{2})}(\frac{-\sqrt{5}+1}{2})^{n-1}}})(-\frac{1}{\sqrt{5}})

=({​{(-\frac{\sqrt{5}+3}{2})(\frac{\sqrt{5}+1}{2})^{n-1}+{(\frac{3-\sqrt{5}}{2})}(\frac{-\sqrt{5}+1}{2})^{n-1}}})(-\frac{1}{\sqrt{5}})

=({​{-(\frac{\sqrt{5}+1}{2})^{n+1}+(\frac{-\sqrt{5}+1}{2})^{n+1}}})(-\frac{1}{\sqrt{5}})

于是

a_{n+1}=\frac{\sqrt{5}}{5}({​{(\frac{\sqrt{5}+1}{2})^{n+1}-(\frac{-\sqrt{5}+1}{2})^{n+1}}})

可以得到

a_{n}=\frac{\sqrt{5}}{5}({​{(\frac{\sqrt{5}+1}{2})^{n}-(\frac{-\sqrt{5}+1}{2})^{n}}})

于是我们就得到斐波那契数列的通项公式

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值