目录
一、背景
一年级数学,让我认识人民币;我看完之后不禁引起一些思考,那些面额的定义为啥没有3、4、6、7块的钱?
疑问不解,总觉得自己少了一些东西,无法组建起来高楼大厦。
二、过程
1.问:为啥没有3、4、6、7块的钱?
人民币中没有3元、4元、6元、7元等币值的设计,主要是基于货币面额设置的科学性和实用性考虑。以下是对这一现象的详细解释:
一、货币面额设置的科学性
在货币设计中,为了简化计算和提高交易效率,通常会选择一些能够高效组合成其他金额的“重要数”作为面额。在我国人民币的设计中,1、2、5、10就被视为这样的“重要数”。这些数字可以通过相加或相减的方式,高效地组合出1至10之间的任意金额,而无需使用更多的面额。
具体来说:
- 1元是最小的单位,可以直接使用。
- 2元可以通过两个1元组合而成,或者单独使用。
- 5元则是一个更大的单位,可以通过1元和2元的组合(5=2+2+1或5=2+3,但考虑到3元不是实际面额,这里更强调2元和1元的组合灵活性)或者单独使用。
- 10元则可以通过1元、2元和5元的组合(如10=5+5或10=2+2+5+1等)来得到。
二、货币面额设置的实用性
从实用性的角度来看,人民币面额的设置也充分考虑了市场需求和流通效率。较小的面额如1元、2元、5元等,便于日常小额交易;而较大的面额如10元、20元、50元、100元等,则便于大额支付和储蓄。
同时,人民币面额的设置也考虑到了历史传承和文化因素。例如,在第二套人民币中,曾经发行过3元面额的纸币,但这一面额在后续的版本中并未继续保留。这可能是因为在实际流通中,3元面额的纸币使用频率相对较低,且可以通过其他面额的纸币组合来替代。
三、总结
综上所述,人民币中没有3元、4元、6元、7元等币值的设计,主要是基于货币面额设置的科学性和实用性考虑。通过选择1、2、5、10等“重要数”作为面额,可以高效地组合出任意金额,同时满足市场需求和流通效率的要求。这种设计方式在人民币的历史发展中得到了验证和延续,成为了人民币面额设置的基本原则之一。
2.人民币面额,从数学逻辑的视角说一说为啥那么做? 例如最小公倍数,最大公约?
从数学逻辑的视角来看,人民币面额的设置确实与最小公倍数、最大公约数等数学概念有关,这些概念有助于解释为什么选择特定的面额组合。
最小公倍数(LCM)与面额组合
最小公倍数是指两个或多个整数共有的最小的正整数倍。在货币设计中,如果面额能够高效地组合成其他金额,那么这些面额的最小公倍数应该相对较小,或者这些面额的组合应该能够覆盖较大的金额范围。
以人民币为例,1、2、5这三个面额的最小公倍数是10(因为10是这三个数都能整除的最小的数)。这意味着,通过这三个面额的组合,我们可以得到1至10之间的任意金额。而10元面额的加入,则进一步扩展了可以组合出的金额范围。
最大公约数(GCD)与面额独立性
最大公约数是指两个或多个整数共有的最大的正整数因子。在货币设计中,如果两个面额的最大公约数较大,那么它们之间的组合可能会产生冗余,即有些金额可以通过多种方式组合得到。这可能会降低交易效率,因为需要更多的计算来确定最优的组合方式。
然而,在人民币面额的设置中,1、2、5、10这四个面额之间的最大公约数都是1(即它们都是互质的),这意味着它们之间的组合是独立的,不会产生冗余。这种独立性有助于简化计算和提高交易效率。
高效组合与货币流通
从数学逻辑的角度来看,人民币面额的设置旨在实现高效组合和货币流通。通过选择能够高效组合成其他金额的面额(如1、2、5、10),可以简化计算过程,提高交易效率。同时,这些面额的组合也能够覆盖较大的金额范围,满足市场需求。
此外,人民币面额的设置还考虑了历史传承和文化因素。例如,在第二套人民币中曾经发行过3元面额的纸币,但在后续的版本中并未继续保留。这可能是因为在实际流通中,3元面额的纸币使用频率相对较低,且可以通过其他面额的纸币组合来替代。这种调整反映了货币设计对市场需求的适应性和灵活性。
综上所述,从数学逻辑的角度来看,人民币面额的设置是基于最小公倍数、最大公约数等数学概念来实现高效组合和货币流通的。这种设置方式在人民币的历史发展中得到了验证和延续,成为了人民币面额设置的基本原则之一。
3.人民币面额的设定还和其它那些数学概念相关,并给我说一下道理
人民币面额的设定不仅与最小公倍数、最大公约数等数学概念相关,还与组合数学、概率论等数学概念紧密相连。以下是对这些数学概念在人民币面额设定中应用的详细解释:
一、组合数学
组合数学是研究从给定集合中选取若干元素的所有可能方式的数学分支。在人民币面额设定中,组合数学的应用体现在如何通过有限的几种面额组合出尽可能多的金额。
- 重要数:在数学领域,1元、2元、5元、10元等面额被称为“重要数”,因为它们能够以最少的运算次数组合出其他任何数值。例如,通过1元、2元和5元的组合,我们可以得到3元(1+2)、4元(2+2)、6元(1+5)、7元(2+5)、8元(1+2+5)等金额。这种组合方式简单且高效,能够满足日常交易中的大部分需求。
- 非重要数:相对于“重要数”,“非重要数”如3元、4元、6元、7元等,在组合时可能需要更多的运算次数或面额数量。因此,在货币设计中,通常会优先选择能够高效组合出其他金额的“重要数”作为面额。
二、概率论
概率论是研究随机现象的数学分支。在人民币面额设定中,概率论的应用体现在如何根据数字的出现概率来选择面额。
- 数字出现概率:在1至9的各种数字排列组合中,某些数字的出现概率较高,而另一些数字的出现概率较低。例如,3的出现概率最多只有18%,而1、2、5出现的总概率则为90%。这意味着,在货币流通中,使用1、2、5等面额的货币能够更频繁地满足交易需求。
- 面额使用频率:基于数字出现概率的考虑,货币设计者会优先选择出现概率较高的数字作为面额,以提高货币的流通效率和找零便利性。例如,在人民币中,1元、2元、5元、10元等面额的使用频率较高,因此被优先保留。
三、道理与实际应用
- 简化计算:通过选择能够高效组合出其他金额的“重要数”作为面额,可以简化交易中的计算过程,提高交易效率。
- 降低印刷成本:有限的面额种类可以减少货币的印刷和发行成本,包括纸张、油墨、防伪技术等费用。
- 提高流通效率:合理的面额设置可以提高货币的流通速度,减少找零的麻烦,从而方便市场交易和人们的生活。
- 适应市场需求:货币面额的设置还需要考虑市场需求和经济发展趋势。随着物价水平的上涨和交易金额的增大,货币面额也需要适时调整以适应市场需求。
综上所述,人民币面额的设定与组合数学、概率论等数学概念紧密相连。这些数学概念的应用有助于实现货币的高效组合、降低印刷成本、提高流通效率和适应市场需求。
三、总结
对于知识的学习,不仅仅是知道,更应该是了解它的历史和发展;以及和我们生活中的映射关系;从而带给我们更多的思考,让我们在实际生活工作中更加高效有趣。
不怕不知道,就怕不知道;长期的教条让我们惯性的去记忆背诵,而从小一两岁的时候的那种天性好奇的能力全都抹去了;这将会是一件极其麻烦的事情。
30年前更多的是我们知道什么,而现在更多的是我们能提出什么问题,能引起什么思考!