Rolling Forecasting和Recursive Forecasting区别

1. Rolling Forecasting

基本原理
  • 逐步滑动窗口预测
    • 模型基于固定长度的历史窗口(如最近 ttt 个时间步的数据)来预测下一个时间步(t+1t+1t+1)。
    • 每次预测后,窗口向前滑动一个时间步,丢弃最早的点,加入最新的预测结果作为历史窗口的一部分。
流程
  1. 确定一个固定长度的历史窗口(例如过去 kkk 个时间步)。
  2. 用这 kkk 个时间步的数据训练模型并预测下一个时间步的数据。
  3. 滑动窗口:将窗口向前移动,使用新的窗口预测下一个时间步。
  4. 重复此过程,直到完成预测序列。
特点
  • 训练和预测分开:通常模型在固定的历史数据上训练一次,之后重复使用。
  • 独立预测:每次预测时,输入窗口仅由已知的真实历史数据组成,不依赖之前的预测值。
优点
  1. 鲁棒性高:每次预测使用真实数据作为输入,避免了预测误差的累积。
  2. 适合短期预测:特别是在数据质量较高的情况下,能够获得较精确的预测。
缺点
  1. 需要较多历史数据:需要始终保持足够长的历史数据窗口。
  2. 滑动窗口计算开销:每次预测前需要重新准备窗口数据。

2. Recursive Forecasting

基本原理
  • 递归式自回归预测
    • 模型基于当前时间步的数据预测下一个时间步的数据。
    • 将预测值作为下一次预测的输入,再次预测未来的值。这个过程重复进行,逐步预测多步。
流程
  1. 使用模型预测第一个时间步的值(例如 t+1t+1t+1)。
  2. 将预测的值作为输入,与历史数据结合,预测下一个时间步的值(t+2t+2t+2)。
  3. 继续递归,逐步预测后续时间步,直到达到预定的预测步长。
特点
  • 自回归预测:每次预测的输入包含模型先前的预测值。
  • 单步预测模型扩展到多步预测:模型本质上只需要预测一个时间步。
优点
  1. 适合长时间序列预测:无需频繁准备新的训练数据。
  2. 训练简单:只需要单步预测模型,不需要设计多步预测模型。
  3. 资源节省:相比滚动窗口,计算开销较低。
缺点
  1. 误差累积:每次预测依赖前面的预测值,误差会随着时间步增长逐渐积累。
  2. 对模型稳定性要求高:需要模型在多个预测步上保持准确性和鲁棒性。

两者对比

特性Rolling ForecastingRecursive Forecasting
输入数据使用真实历史数据使用真实数据和模型预测值
误差传播几乎没有误差累积误差随着预测步长增加而累积
训练复杂度通常需要针对多步预测进行训练单步预测模型即可
计算开销较高,需频繁滑动窗口处理较低,预测过程简单
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值