GARCH时间序列滚动模型

本文介绍了如何使用ARIMA和GARCH滚动模型对股票收盘价进行时间序列分析,涉及数据预处理、划分训练集和测试集、以及滑动窗口下的模型训练与预测。代码示例可在finance褪黑素公众号获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

滚动模型是一种经济模型,用于描述经济中的决策和动态调整。它通常用于分析长期决策的影响,并考虑在不同时间点上的变化和调整。
本文主要是ARIMA、garch滚动模型的解释和基础代码,原文数据可通过下方链接获取,代码可关注gzh‘finance褪黑素’回复【20240430】获取。

一、数据介绍

本文选用的时间序列数据为某股票1481天内的收盘价数据,如下图所示,第一列为未经处理过的年月日时间,第二列为收盘价数据,在进行正式的模型之前,一定要把时间序列数据处理为内置模型可接受的时间性数据,第二列数据一定要是数值型数据,不能是文本性数据,这也是容易出错的地方。

在这里插入图片描述

将第一列数据变为时间数据:

data['交易日期'] = pd.to_datetime(data['交易日期'])
data.set_index('交易日期', inplace=True)

有划分训练集和测试集来验证模型准确需要的可加如下代码:

train_start = '2018-03-01'
train_end = '2022-02-28'
test_start = '2023-03-01'
test_end = '2024-04-08'

train_data = data[train_start:train_end]['日收盘价']
test_data = data[test_start:test_end]['日收盘价']

这样train_data和test_data都变成有时间标签index的收盘价数据了

二、滑动garch模型

代码逻辑:首先,通过循环遍历每个测试期间的开始到结束日期,训练数据是从当前测试月份的开始日期往前推36个月的数据(开始时间),结束时期是从开始日期经过滑动窗口的长度后的日期,根据日期从整个集中数据中选择当前窗口内的训练数据,这些数据通常是用来模型的。
利用选定的训练数据,建立了GARCH模型,这是一种用于预测波动率的模型。
使用已完成的模型进行预测,得到一个时间步长为1的预测序列,将每个月的波动率预测结果添加到rolling_predictions列表中,最后输出每个月的波动率预测结果。

rolling_predictions = []
for test_month_start in pd.date_range(test_start, test_end, freq='MS'):
    test_month_end = test_month_start + pd.offsets.MonthEnd(0)
    train_end_window = test_month_start
    train_start_window = train_end_window - pd.offsets.MonthBegin(36)#向前移动一个月
    train_set = data[train_start_window:train_end_window]['日收盘价']
    model = arch_model(train_set, vol='Garch', p=1, q=1)
    model_fit = model.fit()
    forecast = model_fit.forecast(horizon=1)
    forecast_variance = forecast.variance.values.squeeze()
    rolling_predictions.append(forecast_variance)
print("Rolling Predictions:")
for prediction in rolling_predictions:
    print(prediction)

具体完整代码可关注gzh‘finance褪黑素’回复关键词【20240430】获取,数据可通过下方链接获取。

<think>好的,用户现在想了解时间序列模型的回测方法和工具,以及相关的示例。我需要先回顾一下时间序列回测的基本概念,然后整理常见的方法和工具,并结合引用中的信息来提供具体例子。 首先,回测(Backtesting)在时间序列分析中是指用历史数据验证模型预测效果的过程。用户可能希望知道如何评估模型在历史数据上的表现,从而判断其在实际应用中的有效性。 根据引用中的内容,用户提供的引用提到了ARCH/GARCH模型、Darts库的多变量时间序列处理,以及ARIMA模型的应用。这些都可以作为回测的示例。比如,引用[1]中提到了使用ARCH库进行波动率预测,引用[2]中的Darts模块支持多变量时间序列和训练数据集的自定义,引用[3]展示了ARIMA模型的训练和预测代码。这些都是回测过程中可能用到的工具和方法。 接下来,我需要确定回测的具体步骤。通常包括数据划分、模型训练、模拟预测、性能评估。对于时间序列,数据划分需要注意时间顺序,不能随机分割。例如,滚动窗口法或扩展窗口法。 然后,工具方面,Python中的库如Darts、statsmodels、backtrader等可能相关。引用中的Darts库支持多变量模型,并且可以自定义数据集,这可能对用户有帮助。另外,引用[3]中的ARIMA模型属于statsmodels库,可以用来做单变量预测的回测。 关于方法,除了基本的训练测试集划分,还有交叉验证的变体,如TimeSeriesSplit。此外,回测需要考虑过拟合和前瞻性偏差,确保模型在历史数据上的评估是可靠的。 用户可能需要具体的代码示例,比如如何用Darts进行回测,或者用ARIMA模型进行历史预测。根据引用[2],Darts的数据集处理方式可以结合其文档中的示例来展示如何实现惰性加载,这对于大数据集可能有用。而引用[3]中的ARIMA预测代码可以作为单变量回测的示例。 另外,用户可能想知道回测中常见的指标,如MAE、RMSE等,以及如何可视化结果。这部分可以结合引用中的绘图示例来说明。 最后,需要生成相关问题,比如优化方法、工具比较、应用场景等,帮助用户深入理解。</think>### 时间序列模型回测方法及工具详解 时间序列模型的回测是通过历史数据验证模型预测能力的核心步骤,主要包含以下方法及工具: --- #### 一、回测核心方法 1. **滚动窗口法** 将时间序列划分为固定长度的训练窗口和测试窗口,逐步向后滚动。例如,用前$n$个月数据预测后$m$个月,每次移动$m$个月[^1]。 **公式表示**: $$ \text{训练集} = [t_0, t_{k}], \quad \text{测试集} = [t_{k+1}, t_{k+m}] $$ 2. **扩展窗口法** 训练窗口随时间逐步扩展,测试窗口固定长度。适用于长期趋势预测[^2]。 **特点**:保留更多历史信息,但计算成本较高。 3. **交叉验证变体** 使用`TimeSeriesSplit`等工具分割数据,避免随机划分破坏时间顺序[^3]。Python示例: ```python from sklearn.model_selection import TimeSeriesSplit tscv = TimeSeriesSplit(n_splits=5) ``` --- #### 二、常用工具及示例 1. **Darts库(多变量支持)** - **功能**:支持多变量时间序列、协变量集成、预训练模型(如Transformer、RNN)。 - **回测示例**: ```python from darts import TimeSeries from darts.models import ARIMA # 加载数据并划分训练/测试集 series = TimeSeries.from_csv("data.csv", time_col="date") train, test = series.split_before(0.8) # 训练ARIMA模型并进行回测 model = ARIMA(p=2, d=1, q=1) model.fit(train) backtest = model.historical_forecasts(series, start=0.8, forecast_horizon=3) backtest.plot(label="回测结果") ``` 引用[2]中提到可通过继承`TimeSeries`类自定义数据集,实现惰性加载以节省内存。 2. **statsmodels(统计模型)** - **ARIMA模型回测**(引用[3]扩展): ```python from statsmodels.tsa.arima.model import ARIMA import numpy as np # 训练模型并逐步预测 model = ARIMA(train_data, order=(2,1,1)) results = model.fit() forecasts = [] for t in range(len(test_data)): pred = results.forecast(steps=1) forecasts.append(pred[0]) results = results.append(test_data[t:t+1]) # 更新模型 ``` 3. **Backtrader(量化专用)** 专为金融回测设计,支持策略定制与绩效分析: ```python import backtrader as bt class TSStrategy(bt.Strategy): def next(self): if self.model.predict_next() > self.data.close[0]: self.buy() cerebro = bt.Cerebro() cerebro.addstrategy(TSStrategy) cerebro.run() ``` --- #### 三、关键注意事项 1. **避免前瞻性偏差** 确保特征工程和参数调优仅使用训练期数据,防止信息泄露[^1]。 2. **性能评估指标** - 单步预测:MAE、RMSE - 多步预测:MASE(考虑季节性) - 金融场景:夏普比率、最大回撤 3. **可视化验证** 对比预测值与实际值的时序图,检查残差自相关性(如ACF图)。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值