滚动模型是一种经济模型,用于描述经济中的决策和动态调整。它通常用于分析长期决策的影响,并考虑在不同时间点上的变化和调整。
本文主要是ARIMA、garch滚动模型的解释和基础代码,原文数据可通过下方链接获取,代码可关注gzh‘finance褪黑素’回复【20240430】获取。
一、数据介绍
本文选用的时间序列数据为某股票1481天内的收盘价数据,如下图所示,第一列为未经处理过的年月日时间,第二列为收盘价数据,在进行正式的模型之前,一定要把时间序列数据处理为内置模型可接受的时间性数据,第二列数据一定要是数值型数据,不能是文本性数据,这也是容易出错的地方。
将第一列数据变为时间数据:
data['交易日期'] = pd.to_datetime(data['交易日期'])
data.set_