用于语义和目标导向压缩的机器学习技术-笔记

本文介绍了语义压缩在减少带宽消耗和延迟方面的潜力,通过机器学习工具进行模型训练,包括远程模型训练(如联邦学习)、DNN模型压缩方法(如高级剪枝和知识转移)。文章探讨了多终端函数计算和分布式学习中的挑战,以及DNN在视频压缩和边缘图像检索中的优势,指出优化重构度量的重要性。
摘要由CSDN通过智能技术生成

摘要

取自Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications,主要是阅读其第四章的笔记

介绍

  • 语义压缩semantic compression的特点:提取与接收器要执行的任务最相关的语义信息,减少带宽消耗和传输延迟
  • 现实落地的问题:统计信息不可知
  • 解决方案:机器学习工具训练模型,以促进语义信息提取,而无需数学模型

接下来,分两个方向介绍语义通信研究:训练和预测

远程模型训练(?联邦学习)

模型压缩

联邦学习

DNN模型压缩 model compression:神经网络大部分参数是多余的,可以消除没有帮助的参数。

方法有:

  1. 高级剪枝,例如second-order derivative the Hessian
  2. 直接使用训练期间施加的稀疏性约束来训练网络(?类似于预剪枝)
  3. vector quantization 网络权重量化。对于典型的网络,大约 90% 的存储被密集连接层占用,而超过 90% 的运行时间被卷积层占用,那减少通信开销,主要对全连接层“动刀”。
  4. knowledge transfer 把大型复杂集成模型学到的知识迁移到较小的模型中
  5. 模型架构优化

 分布式情况

CEO问题:如何最有效地估计一个不可观察的随机变量,这个变量被多个具有噪声的观察者所观察。

依据是否中心化分为:

  • federated learning (用随机梯度下降迭代) 
    • fedavg算法:分布式有损问题,迭代的目标是计算模型更新的平均值,是一种语义通信
  • fully distributed, or peer-to-peer learning

多终端函数计算问题

计算和通信的不同角色

一般的P2P:将这些随机变量传送到节点,然后节点计算函数值,这样一般最优

多终端函数计算问题的最优性能不得而知,目前的优化方式收益微小

远程推理

various lossy compression problems can be considered in the context of semantic communication under the appropriate reconstruction metric

在适当的重构度量条件下,各种有损压缩问题都可以在语义通信的背景下加以考虑

DNN对比别的ML算法在压缩上的优势:可以针对接收方需要的任何重建度量来训练

视频压缩中,用region-of-interest,等一系列针对特定检测任务的视频压缩算法

split learning:将DNN分为两部分,一部分在编码器执行,主要是特征提取,另一部分在接收器执行,过程中可以对特征向量量化/压缩(无监督学习,自编码器)

边缘图像检索问题:一方面,要减少传输的数据量(带宽有限),一方面,数据库仅在原创可用,因此需要压缩降低通信速率。可能用更多数据来面部图像压缩

研究表明,无法同时最小化重建信号的分类误差率、失真和感知度量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值