Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.
Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.
Input Specification:
Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤10000). The second line contains K numbers, separated by a space.
Output Specification:
For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.
Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4
参考翻译:
给定K个整数序列{N1, N2,…, nk}。连续子序列定义为{Ni, Ni+1,…, Nj}其中1≤i≤j≤K。最大子序列是具有最大元素和的连续子序列。例如,给定序列{-2,11,-4,13,-5,-2},其最大子序列为{11,-4,13},最大和为20。
现在你要找到最大的和,包括最大子序列的第一个和最后一个数。
输入规格:
每个输入文件包含一个测试用例。每个case占用两行。第一行为正整数K(≤10000)。第二行包含K个数字,用空格分隔。
输出规范:
对于每个测试用例,在一行中输出最大的和,以及最大子序列的第一个和最后一个数字。数字之间必须用一个空格隔开,但行末不能有多余的空格。如果最大子序列不是唯一的,则输出索引i和j最小的子序列(如示例案例所示)。如果所有K个数字都是负的,那么它的最大和被定义为0,并且你应该输出整个序列的第一个和最后一个数字。
代码:
#include<iostream>
using namespace std;
const int N = 100000;
int ans[N];
int dp[N];
int max_i = 0;
int max_sum = -999999;
int main()
{
int n;
cin >> n;
int flag = 0;
for(int i = 1; i <= n; i++){
cin >> ans[i];
if(ans[i] > 0) {flag = 1;}
dp[i]=max(dp[i-1]+ans[i],ans[i]);
// cout<<dp[i]<<" ";
if(max_sum < dp[i]){
max_sum=dp[i];
max_i = i;
}
}
//cout<<"\n";
int start_i = 1;
int temp = max_sum;
for(int i = max_i;i > 0 && max_sum > 0; i-- )
{
temp = temp - ans[i];
if(temp == 0){
start_i = i;
}
}
if(flag == 0){
max_sum = 0;
cout<<max_sum<<" "<<ans[1]<<" "<<ans[n]<<"\n";
}else{
cout<<max_sum<<" "<<ans[start_i]<<" "<<ans[max_i]<<"\n";
}
return 0;
}