目录
量子计算学习路径及大纲设计
一、基础概念与背景(1-2周)
-
量子计算的定义与历史
- 核心概念:量子比特(Qubit)的叠加态与纠缠态,量子并行性
- 发展历程:从费曼的量子模拟设想(1981年)到Shor算法(1994年)和IBM Q System One(2019年)的里程碑
- 量子优越性:在特定问题上超越经典计算机的潜力,如因式分解、优化问题
-
量子力学基础
- 关键现象:叠加态(如薛定谔的猫)、量子纠缠、测量坍缩
- 数学表示:布洛赫球、纯态与混合态的区别
二、前置知识准备(3-4周)
-
数学基础
- 线性代数:向量空间、矩阵运算(如酉矩阵)、特征值/向量、张量积
- 概率论:概率分布、条件概率、贝叶斯定理
- 复数运算:复数的几何意义及其在量子态描述中的应用
-
量子力学入门
- 波函数与薛定谔方程
- 量子态演化与幺正变换