【导数术】12.极值点偏移与拐点偏移

12.极值点偏移&&拐点偏移

(1)对数均值不等式

均值不等式链

a , b > 0 , a ≠ b a,b>0,a \neq b a,b>0,a=b,有:
2 1 a + 1 b < a b < b − a ln ⁡ b − ln ⁡ a < a + b 2 \frac {2}{\frac 1 a + \frac 1 b}<\sqrt{ab}<\frac{b-a}{\ln b-\ln a}<\frac {a+b} 2 a1+b12<ab <lnblnaba<2a+b

即:调和均值<几何均值<对数均值<算术均值(两个数不等时)

P r a . 12.1 Pra.12.1 Pra.12.1

已知 f ( x ) = x e − x f(x)=xe^{-x} f(x)=xex,若 x 1 ≠ x 2 , f ( x 1 ) = f ( x 2 ) x_1 \neq x_2,f(x_1)=f(x_2) x1=x2,f(x1)=f(x2),证明: x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

  • S o l u t i o n Solution Solution:已知条件取对数得对数均值为2,几何均值大于对数均值即可。
P r a . 12.2 Pra.12.2 Pra.12.2

f ( x ) = e x − a x + a f(x)=e^x-ax+a f(x)=exax+a的两个零点为 x 1 , x 2 , x 1 < x 2 x_1,x_2,x_1<x_2 x1,x2,x1<x2,证明: f ′ ( x 1 x 2 ) < 0 f'(\sqrt {x_1 x_2})<0 f(x1x2 )<0

  • S o l u t i o n Solution Solution:由题意:

e x 1 − a x 1 + a = 0 , e x 2 − a x 2 + a = 0 e^{x_{1}}-a x_{1}+a=0, e^{x_{2}}-a x_{2}+a=0 ex1ax1+a=0,ex2ax2+a=0

移项可得:
x 1 = ln ⁡ ( x 1 − 1 ) + ln ⁡ a x 2 = ln ⁡ ( x 2 − 1 ) + ln ⁡ a \begin{aligned} &x_{1}=\ln \left(x_{1}-1\right)+\ln a \\ & x_{2}=\ln \left(x_{2}-1\right)+\ln a \end{aligned} x1=ln(x11)+lnax2=ln(x21)+lna
两式相减得:
x 1 − x 2 = ln ⁡ ( x 1 − 1 ) − ln ⁡ ( x 2 − 1 ) x_{1}-x_{2}=\ln \left(x_{1}-1\right)-\ln \left(x_{2}-1\right) x1x2=ln(x11)ln(x21)
即:
( x 1 − 1 ) − ( x 2 − 1 ) ln ⁡ ( x 1 − 1 ) − ln ⁡ ( x 2 − 1 ) = 1 \frac{\left(x_{1}-1\right)-\left(x_{2}-1\right)}{\ln \left(x_{1}-1\right)-\ln \left(x_{2}-1\right)}=1 ln(x11)ln(x21)(x11)(x21)=1
均值不等式有:
( x 1 − 1 ) ( x 2 − 1 ) < ( x 1 − 1 ) − ( x 2 − 1 ) ln ⁡ ( x 1 − 1 ) − ln ⁡ ( x 2 − 1 ) = 1 \sqrt{\left(x_{1}-1\right)\left(x_{2}-1\right)}<\frac{\left(x_{1}-1\right)-\left(x_{2}-1\right)}{\ln \left(x_{1}-1\right)-\ln \left(x_{2}-1\right)}=1 (x11)(x21) <ln(x11)ln(x21)(x11)(x21)=1
所以:
ln ⁡ ( x 1 − 1 ) ( x 2 − 1 ) < 0 \ln \left(x_{1}-1\right)\left(x_{2}-1\right)<0 ln(x11)(x21)<0
移项式子相加得:
x 1 + x 2 = 2 ln ⁡ a + ln ⁡ ( x 1 − 1 ) ( x 2 − 1 ) < 2 ln ⁡ a x_{1}+x_{2}=2 \ln a+\ln \left(x_{1}-1\right)\left(x_{2}-1\right)<2 \ln a x1+x2=2lna+ln(x11)(x21)<2lna
所以:
x 1 x 2 < x 1 + x 2 2 < ln ⁡ a \sqrt{x_{1} x_{2}}<\frac{x_{1}+x_{2}}{2}<\ln a x1x2 <2x1+x2<lna
而函数 f ( x ) f(x) f(x) ( − ∞ , ln ⁡ a ) (-\infty, \ln a) (,lna)单调递减 ⇒ f ′ ( x 1 x 2 ) < 0 \Rightarrow f^{\prime}\left(\sqrt{x_{1} x_{2}}\right)<0 f(x1x2 )<0

P r a . 12.3 Pra.12.3 Pra.12.3

f ( x ) = x ln ⁡ x f(x)=x\ln x f(x)=xlnx与直线 y = m y=m y=m交于 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),证明:
0 < x 1 x 2 < 1 e 2 0<x_1x_2<\frac 1 {e^2} 0<x1x2<e21

  • S o l u t i o n Solution Solution:易得 m < 0 m<0 m<0,同 P r a . 12.2 Pra.12.2 Pra.12.2中,取对数后两式子相加减,由算术均值>对数均值即可。

(2)构造对称函数

步骤:

求出极值点,双变量根据单调性化单变量,构造对称函数,整体求导得答案

P r a . 12.4 Pra.12.4 Pra.12.4

已知 f ( x ) = x e − x f(x)=xe^{-x} f(x)=xex,若 x 1 ≠ x 2 , f ( x 1 ) = f ( x 2 ) x_1 \neq x_2,f(x_1)=f(x_2) x1=x2,f(x1)=f(x2),证明: x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

  • S o l u t i o n Solution Solution:求导得函数 f ( x ) f(x) f(x) ( − ∞ , 1 ) (-\infty,1) (,1)递增, ( 1 , + ∞ ) (1,+\infty) (1,+)递减

此处我们先写出:
f ′ ( x ) = 1 − x e x f'(x)=\frac{1-x}{e^x} f(x)=ex1x
易得 0 < x 1 < 1 , x 2 > 1 0<x_1<1,x_2>1 0<x1<1,x2>1,原题目证明式子等价于 x 2 > 2 − x 1 x_2>2-x_1 x2>2x1

考虑到 x 2 , 2 − x 1 ∈ ( 1 , + ∞ ) x_2,2-x_1\in(1,+\infty) x2,2x1(1,+),所以等价于 f ( x 2 ) < f ( 2 − x 1 ) f(x_2)<f(2-x_1) f(x2)<f2x1)

化单变量 f ( x 1 ) − f ( 2 − x 1 ) < 0 , 0 < x 1 < 1 f(x_1)-f(2-x_1)<0,0<x_1<1 f(x1)f(2x1)<0,0<x1<1

构造对称函数 g ( x ) = f ( x ) − f ( 2 − x ) , 0 < x < 1 g(x)=f(x)-f(2-x),0<x<1 g(x)=f(x)f(2x),0<x<1

考虑到 g ( 1 ) = 0 g(1)=0 g(1)=0整体求导
g ′ ( x ) = f ′ ( x ) + f ′ ( 2 − x ) = 1 − x e x + x − 1 e 2 − x g'(x)=f'(x)+f'(2-x)=\frac{1-x}{e^x}+\frac{x-1}{e^{2-x}} g(x)=f(x)+f(2x)=ex1x+e2xx1
证明 g ′ ( x ) > 0 g'(x)>0 g(x)>0即可,而这是显然的。

P r a . 12.5 Pra.12.5 Pra.12.5

f ( x ) = e x − a x + a f(x)=e^x-ax+a f(x)=exax+a的两个零点为 x 1 , x 2 , x 1 < x 2 x_1,x_2,x_1<x_2 x1,x2,x1<x2,证明: f ′ ( x 1 x 2 ) < 0 f'(\sqrt {x_1 x_2})<0 f(x1x2 )<0

  • S o l u t i o n Solution Solution:加强证明 x 1 + x 2 < 2 ln ⁡ a x_1+x_2<2\ln a x1+x2<2lna

根据题意显然 x 1 < ln ⁡ a < x 2 x_1<\ln a<x_2 x1<lna<x2,函数 f ( x ) f(x) f(x) ( − ∞ , ln ⁡ a ) (-\infty,\ln a) (,lna)递减, ( ln ⁡ a , + ∞ ) (\ln a,+\infty) (lna,+)递增

上不等式转化为: x 2 < 2 ln ⁡ a − x 1 x_2<2\ln a-x_1 x2<2lnax1,而 x 2 , 2 ln ⁡ a − x 1 ∈ ( ln ⁡ a , + ∞ ) x_2,2\ln a-x_1\in(\ln a,+\infty) x2,2lnax1(lna,+)

所以转化为: f ( x 2 ) < f ( 2 ln ⁡ a − x 1 ) f(x_2)<f(2\ln a-x_1) f(x2)<f(2lnax1)

即: f ( x 1 ) − f ( 2 ln ⁡ a − x 1 ) < 0 f(x_1)-f(2\ln a-x_1)<0 f(x1)f(2lnax1)<0

构造函数 g ( x ) = f ( x ) − f ( 2 ln ⁡ a − x ) , x < ln ⁡ a g(x)=f(x)-f(2\ln a-x),x<\ln a g(x)=f(x)f(2lnax),x<lna

边界 g ( ln ⁡ a ) = 0 g(\ln a)=0 g(lna)=0,期望 g ′ ( x ) > 0 g'(x)>0 g(x)>0

[均值不等式 a + b > 2 a b , a ≠ b a+b>2\sqrt{ab},a\neq b a+b>2ab ,a=b]

g ′ ( x ) = f ′ ( x ) + f ( 2 ln ⁡ a − x ) = e x + e 2 ln ⁡ a − x − 2 a > 2 ( e 2 ln ⁡ a ) − 2 a = 0 g'(x)=f'(x)+f(2\ln a-x)=e^{x}+e^{2\ln a-x}-2a>2(e^{2\ln a})-2a=0 g(x)=f(x)+f(2lnax)=ex+e2lnax2a>2(e2lna)2a=0

证毕。

(3)作差or作比换元

P r a . 12.6 Pra.12.6 Pra.12.6

已知 x 1 , x 2 x_1,x_2 x1,x2是函数 f ( x ) = e x − a x f(x)=e^x-ax f(x)=exax的两个零点且 x 1 < x 2 x_1<x_2 x1<x2

证明: x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2 x 1 x 2 < 1 x_1x_2<1 x1x2<1

  • S o l u t i o n Solution Solution:不妨令 x 1 < x 2 x_1<x_2 x1<x2,显然 x 1 > 0 x_1>0 x1>0

令:
t = x 2 x 1 > 1 ⇒ x 2 = t x 1 t=\frac{x_2}{x_1}>1\Rightarrow x_2=tx_1 t=x1x2>1x2=tx1
有:
t x 1 e − t x 1 = x 1 e − x tx_1e^{-tx_1}=x_1e^{-x} tx1etx1=x1ex
所以:
{ x 1 = ln ⁡ t t − 1 x 2 = t ln ⁡ t t − 1 \left\{ \begin{aligned} x_1=\frac{\ln t}{t-1}\\ x_2=\frac{t\ln t}{t-1} \end{aligned}\right. x1=t1lntx2=t1tlnt
化为 t t t的不等式证明即可,相乘时注意对 t \sqrt{t} t 整体换元,略。

P r a . 12.7 Pra.12.7 Pra.12.7

已知函数 f ( x ) = x 2 − a ln ⁡ x f(x)=x^2-a\ln x f(x)=x2alnx,极值点为 x 0 x_0 x0,零点为 x 1 , x 2 ( x 1 < x 2 ) x_1,x_2(x_1<x_2) x1,x2(x1<x2).

求证:
x 1 + 3 x 2 > 4 x 0 x_1+3x_2>4x_0 x1+3x2>4x0

  • S o l u t i o n Solution Solution:令:

t = x 2 x 1 ⇒ x 2 = t x 1 ( t > 1 ) t=\frac{x_2}{x_1}\Rightarrow x_2=tx_1(t>1) t=x1x2x2=tx1(t>1)

有:
x 1 2 − a ln ⁡ x 1 = t 2 x 1 2 − a ln ⁡ t x 1 x_1^2-a\ln x_1=t^2x_1^2-a\ln tx_1 x12alnx1=t2x12alntx1
于是:
x 1 2 = a ln ⁡ t t 2 − 1 x_1^2=\frac{a\ln t}{t^2-1} x12=t21alnt
易知:
x 0 = a 2 x_0=\sqrt\frac{a}{2} x0=2a
原证明式化为:
( 1 + 3 t ) x 1 < 4 a 2 (1+3t)x_1<4\sqrt\frac{a}{2} (1+3t)x1<42a
平方即证明:
( 1 + 3 t ) 2 x 1 2 < 8 a ⇔ ( 1 + 3 t ) 2 ln ⁡ t − 8 t 2 + 8 > 0 ⇔ ln ⁡ t − 8 ( t 2 − 1 ) ( 1 + 3 t ) 2 > 0   [ 指数处理技巧 ] \begin{aligned} (1+3t)^2x_1^2<8a&\Leftrightarrow (1+3t)^2\ln t-8t^2+8>0\\ &\Leftrightarrow\ln t-\frac{8(t^2-1)}{(1+3t)^2}>0 ~[指数处理技巧] \end{aligned} (1+3t)2x12<8a(1+3t)2lnt8t2+8>0lnt(1+3t)28(t21)>0 [指数处理技巧]
注意到
ln ⁡ t − 8 ( t 2 − 1 ) ( 1 + 3 t ) 2 > t − 1 t − 8 ( t 2 − 1 ) ( 1 + 3 t ) 2 = ( t − 1 ) 9 t 2 − 2 t − 7 t ( 1 + 3 t ) 2 = ( t − 1 ) 2 9 t + 7 t ( 1 + 3 t ) 2 > 0 \begin{aligned} \ln t-\frac{8(t^2-1)}{(1+3t)^2}>&\frac{t-1}{t}-\frac{8(t^2-1)}{(1+3t)^2}\\ &=(t-1)\frac{9t^2-2t-7}{t(1+3t)^2}\\ &={(t-1)^2}\frac{9t+7}{t(1+3t)^2}>0 \end{aligned} lnt(1+3t)28(t21)>tt1(1+3t)28(t21)=(t1)t(1+3t)29t22t7=(t1)2t(1+3t)29t+7>0
用到了放缩:
ln ⁡ x ≥ x − 1 x ( x > 0 ) [ 等号在 x = 1 取得 ] \ln x\geq\frac{x-1}{x}(x>0)[等号在x=1取得] lnxxx1(x>0)[等号在x=1取得]

(4)简单放缩

P r a . 12.7 Pra.12.7 Pra.12.7

g ( x ) = x ln ⁡ x − a 2 x 2 − x   ( a ∈ R ) g(x)=x\ln x-\frac a 2 x^2-x~(a\in R) g(x)=xlnx2ax2x (aR)有两个相异的极值点 x 1 , x 2 x_1,x_2 x1,x2)证明:
1 ln ⁡ x 1 + 1 ln ⁡ x 2 > 2 a e \frac 1 {\ln x_1}+ \frac 1 {\ln x_2}>2ae lnx11+lnx21>2ae

  • S o l u t i o n Solution Solution:放缩证明 a e > 1 ae>1 ae>1,所以证明左侧 > 2 >2 >2即可,采用等比例法即可。
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值