基于蚁群优化的大规模自组网MPR选择算法

本文提出了一种基于节点状态的DNACO算法,将蚁群优化应用于大规模自组网的MPR选择,结合节点移动状态和三跳邻居信息,以降低MPR集大小并提升网络性能。实验显示,DNACO算法在延迟、丢包率和吞吐量上较传统算法有显著改进。
摘要由CSDN通过智能技术生成

【摘  要】MPR是Ad-hoc网络中用来减少网络中控制包数量,从而降低网络开销的一种机制,传统上对于MPR集的选取常采用贪心算法,无法很好地适应如今的大规模自组网。因此将蚁群算法用于MPR集合的选择过程中,提出一种基于节点状态的DNACO算法,将节点的移动状态信息和三跳邻居信息引入到蚁群的路径选择过程。实验结果表明,DNACO在降低MPR集大小、提升网络性能上较传统算法上都有一定的提升。 

【关键词】自组网 ;蚁群算法;MPR

0   引言

近些年来,在民用领域和军用领域,移动自组网的发展变得越来越引人注目,其中无人机(UAV, Unmanned Aerial Vehicle)凭借其体积小、成本低、便于部署等优势[1]在实时监控、搜寻救援、中继传输、战略打击等方面都得到了广泛的应用[2-3]。然而无人机自组织网络具有节点移动性强、网络拓扑变化快、数据交互频繁、能量消耗大等特点[4],传统的路由算法已经无法满足其对网络传输延迟、丢包率、路由开销等方面的要求。 

最优链路状态路由(OLSR, Optimized Link State  Routing)协议是一种经典的链路状态协议,通过在节点间广播Hello分组来完成链路探测、邻居发现以及多点中继(MPR, Multi-Point Relay)节点的选择[5]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值