【摘 要】MPR是Ad-hoc网络中用来减少网络中控制包数量,从而降低网络开销的一种机制,传统上对于MPR集的选取常采用贪心算法,无法很好地适应如今的大规模自组网。因此将蚁群算法用于MPR集合的选择过程中,提出一种基于节点状态的DNACO算法,将节点的移动状态信息和三跳邻居信息引入到蚁群的路径选择过程。实验结果表明,DNACO在降低MPR集大小、提升网络性能上较传统算法上都有一定的提升。
【关键词】自组网 ;蚁群算法;MPR
0 引言
近些年来,在民用领域和军用领域,移动自组网的发展变得越来越引人注目,其中无人机(UAV, Unmanned Aerial Vehicle)凭借其体积小、成本低、便于部署等优势[1]在实时监控、搜寻救援、中继传输、战略打击等方面都得到了广泛的应用[2-3]。然而无人机自组织网络具有节点移动性强、网络拓扑变化快、数据交互频繁、能量消耗大等特点[4],传统的路由算法已经无法满足其对网络传输延迟、丢包率、路由开销等方面的要求。
最优链路状态路由(OLSR, Optimized Link State Routing)协议是一种经典的链路状态协议,通过在节点间广播Hello分组来完成链路探测、邻居发现以及多点中继(MPR, Multi-Point Relay)节点的选择[5]。