基于脉冲神经网络的无线空中联邦学习

本文提出将脉冲神经网络应用于联邦边缘学习,以降低计算和通信开销。通过空中计算技术聚合局部模型参数,解决了传统深度学习模型在联邦学习中的资源消耗问题。实验表明,提出的分支定界算法在性能和通信效率上优于SDR算法。
摘要由CSDN通过智能技术生成

【摘  要】联邦学习可以在保护数据隐私的同时,快速地从大量分布式数据中提炼智能模型,已经成为实现边缘人工智能的主流解决方案。然而,现有的联邦学习工作聚焦于在无线网络边缘部署传统的深度神经网络(如卷积神经网络等),给移动设备带来了巨大的计算负载和能量消耗。因此,提出将一种新的低消耗神经网络——脉冲神经网络,应用于联邦边缘学习中。相较于传统的深度神经网络,它训练所需的计算量和能量消耗更低。同时,为了减少通信开销,在每一轮的联邦学习训练中,提出利用空中计算技术来聚合所有局部模型的参数。整个问题是一个二次约束二次规划问题,为解决该问题,提出了一种基于分枝定界算法的算法。通过在CIFAR10数据集上的大量实验表明,该算法优于现有方法,如半正定松弛等。

【关键词】联邦学习;空中计算;脉冲神经网络;深度学习;凸优化

0   引言

随着移动通信、物联网技术的发展,无线网络中的移动设备数量呈现指数级的增长,这些设备所拥有的海量计算和数据资源极大地推动了边缘人工智能在网络边缘的部署,从而为移动用户提供具有高可靠性、低延迟的智能服务,由此形成了一个新的研究领域,称为边缘机器学习[1-2]。

在众多的边缘机器学习框架中,应用最为广泛的是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值