【摘 要】联邦学习可以在保护数据隐私的同时,快速地从大量分布式数据中提炼智能模型,已经成为实现边缘人工智能的主流解决方案。然而,现有的联邦学习工作聚焦于在无线网络边缘部署传统的深度神经网络(如卷积神经网络等),给移动设备带来了巨大的计算负载和能量消耗。因此,提出将一种新的低消耗神经网络——脉冲神经网络,应用于联邦边缘学习中。相较于传统的深度神经网络,它训练所需的计算量和能量消耗更低。同时,为了减少通信开销,在每一轮的联邦学习训练中,提出利用空中计算技术来聚合所有局部模型的参数。整个问题是一个二次约束二次规划问题,为解决该问题,提出了一种基于分枝定界算法的算法。通过在CIFAR10数据集上的大量实验表明,该算法优于现有方法,如半正定松弛等。
【关键词】联邦学习;空中计算;脉冲神经网络;深度学习;凸优化
0 引言
随着移动通信、物联网技术的发展,无线网络中的移动设备数量呈现指数级的增长,这些设备所拥有的海量计算和数据资源极大地推动了边缘人工智能在网络边缘的部署,从而为移动用户提供具有高可靠性、低延迟的智能服务,由此形成了一个新的研究领域,称为边缘机器学习[1-2]。
在众多的边缘机器学习框架中,应用最为广泛的是