基于半监督深度学习的网络恶意加密流量识别方法

摘 要

针对 TLS 恶意流量识别方法存在大量标记样本获取困难、无标记样本没有充分利用、模型对于未知样本识别率较低等问题,提出基于半监督深度学习的网络恶意加密流量识别方法。该方法能够利用大量未标记网络流量用于模型训练,提升分类模型的泛化能力。该方法首先借助网络流量图片化方法将原始流量 PCAP 转换为灰度图,然后借助 FixMatch 框架对实现少标记样本下恶意流量进行识别。在公开数据集 CTU-Malware-Capture 和 USTC-TFC2016 上对模型训练和测试,结果表明:FixMatch 模型在准确率、精确度、召回率和 F1值这 4 个指标上均优于 PseudoLabel、MixMatch 和 ICT 方法。此外,在少标记样本量情况下,FixMatch 模型对恶意加密流量的识别优势更为明显。

内容目录:

1 相关知识

1.1 卷积神经网络

1.2 一致性正则化

1.3 相关半监督深度学习算法

2 基于 FixMatch 的 TLS 网络恶意流量识别方法

2.1 网络流量图片化

2.2 构建 FixMatch 的 TLS 网络恶意流量识别模型

3 实验结果及分析

3.1 实验环境与数据集

3.2 评价指标

3.3 模型参数设置

3.4 实验结果及分析

4 结 语

中国互联网信息中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值