摘 要
针对 TLS 恶意流量识别方法存在大量标记样本获取困难、无标记样本没有充分利用、模型对于未知样本识别率较低等问题,提出基于半监督深度学习的网络恶意加密流量识别方法。该方法能够利用大量未标记网络流量用于模型训练,提升分类模型的泛化能力。该方法首先借助网络流量图片化方法将原始流量 PCAP 转换为灰度图,然后借助 FixMatch 框架对实现少标记样本下恶意流量进行识别。在公开数据集 CTU-Malware-Capture 和 USTC-TFC2016 上对模型训练和测试,结果表明:FixMatch 模型在准确率、精确度、召回率和 F1值这 4 个指标上均优于 PseudoLabel、MixMatch 和 ICT 方法。此外,在少标记样本量情况下,FixMatch 模型对恶意加密流量的识别优势更为明显。
内容目录:
1 相关知识
1.1 卷积神经网络
1.2 一致性正则化
1.3 相关半监督深度学习算法
2 基于 FixMatch 的 TLS 网络恶意流量识别方法
2.1 网络流量图片化
2.2 构建 FixMatch 的 TLS 网络恶意流量识别模型
3 实验结果及分析
3.1 实验环境与数据集
3.2 评价指标
3.3 模型参数设置
3.4 实验结果及分析
4 结 语
中国互联网信息中