李宏毅机器学习06—Logistic Regression

一、逻辑回归

1.建立函数集

判断x属于C_{1}的概率

和线性回归对比:

2.函数的好坏

已知一组训练数据

假定训练数据来自后验概率,已知一组w和b,求产生这组数据的概率。

最大可能性产生这组训练数据的w和b :

函数整理、变换:

两个伯努利分布的交叉熵。

交叉熵:代表两个分布的接近程度

和线性回归对比

*线性回归中的1/2是为了方便求导

3.找到最好的函数

计算过程

和线性回归对比:

*直接用线性回归求导存在的问题:


 

用Square Error时(线性回归求导),在距离最优解很远的时候微分也会很小。

 

二、Discriminative和Generative(判别模型与生成模型)

判别式:逻辑回归

生成式:1.高斯判别模型   2.朴素贝叶斯

1.判别式与生成式对比

相同的模型,不同的函数

Discriminative(判别式)的效果更好一些。

举例:

用朴素贝叶斯的方法

认为测试数据属于class2。会出现这种结果,是因为样本分布不均匀。 

2.生成式的优点:

1.生成模型需要假定概率分布,因此相比判别模型,训练样本数对error的影响更小。

2.生成模型对有噪声的样本可以更好的忽视错误的label。

3.先验和类分类可以分别从不同的来源进行估计。

 

三、多分类(以3个分类为例)

交叉熵少了一个负号

 

四、逻辑回归的限制

上例做不到,不同分类的边界应该是一条直线。

对上例的处理:特征迁移

找到适当的特征迁移:将多个逻辑回归模型串联

举例:

这样就可以用逻辑回归进行分类了。

这就是神经网络。

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值