一、逻辑回归
1.建立函数集
判断x属于的概率
和线性回归对比:
2.函数的好坏
已知一组训练数据
假定训练数据来自后验概率,已知一组w和b,求产生这组数据的概率。
最大可能性产生这组训练数据的w和b :
函数整理、变换:
两个伯努利分布的交叉熵。
交叉熵:代表两个分布的接近程度
和线性回归对比
*线性回归中的1/2是为了方便求导
3.找到最好的函数
计算过程
和线性回归对比:
*直接用线性回归求导存在的问题:
用Square Error时(线性回归求导),在距离最优解很远的时候微分也会很小。
二、Discriminative和Generative(判别模型与生成模型)
判别式:逻辑回归
生成式:1.高斯判别模型 2.朴素贝叶斯
1.判别式与生成式对比
相同的模型,不同的函数
Discriminative(判别式)的效果更好一些。
举例:
用朴素贝叶斯的方法
认为测试数据属于class2。会出现这种结果,是因为样本分布不均匀。
2.生成式的优点:
1.生成模型需要假定概率分布,因此相比判别模型,训练样本数对error的影响更小。
2.生成模型对有噪声的样本可以更好的忽视错误的label。
3.先验和类分类可以分别从不同的来源进行估计。
三、多分类(以3个分类为例)
交叉熵少了一个负号
四、逻辑回归的限制
上例做不到,不同分类的边界应该是一条直线。
对上例的处理:特征迁移
找到适当的特征迁移:将多个逻辑回归模型串联
举例:
这样就可以用逻辑回归进行分类了。
这就是神经网络。